SIMBAD references

2011MNRAS.417.1747D - Mon. Not. R. Astron. Soc., 417, 1747-1759 (2011/November-1)

The close classical T Tauri binary V4046 Sgr: complex magnetic fields and distributed mass accretion.

DONATI J.-F., GREGORY S.G., MONTMERLE T., MAGGIO A., ARGIROFFI C., SACCO G., HUSSAIN G., KASTNER J., ALENCAR S.H.P., AUDARD M., BOUVIER J., DAMIANI F., GUDEL M., HUENEMOERDER D. and WADE G.A.

Abstract (from CDS):

We report here the first results of a multi-wavelength campaign focusing on magnetospheric accretion processes within the close binary system V4046 Sgr, hosting two partly convective classical T Tauri stars of masses ≃ 0.9 M and age ≃ 12 Myr. In this paper, we present time-resolved spectropolarimetric observations collected in 2009 September with ESPaDOnS at the Canada–France–Hawaii Telescope (CFHT) and covering a full span of 7 d or ≃ 2.5 orbital/rotational cycles of V4046 Sgr. Small circularly polarized Zeeman signatures are detected in the photospheric absorption lines but not in the accretion-powered emission lines of V4046 Sgr, thereby demonstrating that both system components host large-scale magnetic fields weaker and more complex than those of younger, fully convective classical T Tauri stars (cTTSs) of only a few Myr and similar masses.

Applying our tomographic imaging tools to the collected data set, we reconstruct maps of the large-scale magnetic field, photospheric brightness and accretion-powered emission at the surfaces of both stars of V4046 Sgr. We find that these fields include significant toroidal components, and that their poloidal components are mostly non-axisymmetric with a dipolar component of 50–100 G strongly tilted with respect to the rotation axis; given the similarity with fields of partly convective main-sequence stars of similar masses and rotation periods, we conclude that these fields are most likely generated by dynamo processes. We also find that both stars in the system show cool spots close to the pole and extended regions of low-contrast, accretion-powered emission; it suggests that mass accretion is likely distributed rather than confined in well-defined high-contrast accretion spots, in agreement with the derived magnetic field complexity.


Abstract Copyright: 2011 The Authors. Monthly Notices of the Royal Astronomical Society2011 RAS

Journal keyword(s): techniques: polarimetric - stars: formation - stars: imaging - stars: individual: V4046 Sgr - stars: magnetic fields - stars: rotation

Simbad objects: 9

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2011MNRAS.417.1747D and select 'bookmark this link' or equivalent in the popup menu


2019.12.10-04:15:43

© Université de Strasbourg/CNRS

    • Contact