SIMBAD references

2012AJ....143...39C - Astron. J., 143, 39 (2012/February-0)

A uniform search for secondary eclipses of hot Jupiters in Kepler Q2 light curves.


Abstract (from CDS):

In this paper, we present the results of searching the Kepler Q2 public data set for the secondary eclipses of 76 hot Jupiter planet candidates from the list of 1235 candidates published by Borucki et al. This search has been performed by modeling both the Kepler pre-search data conditioned light curves and new light curves produced via our own photometric pipeline. We derive new stellar and planetary parameters for each system, while calculating robust errors for both. We find 16 systems with 1σ-2σ, 14 systems with 2σ-3σ, and 6 systems with >3σ confidence level secondary eclipse detections in at least one light curve produced via the Kepler pre-search data conditioned light curve or our own pipeline; however, results can vary depending on the light curve modeled and whether eccentricity is allowed to vary or not. We estimate false alarm probabilities of 31%, 10%, and 6% for the 1σ-2σ, 2σ-3σ, and >3σ confidence intervals, respectively. Comparing each secondary eclipse result to theoretical expectations, we find that the majority of detected planet candidates emit more light than expected owing to thermal blackbody emission in the optical Kepler bandpass, and present a trend of increasing excess emission with decreasing maximum effective planetary temperature. These results agree with previously published optical secondary eclipse data for other hot Jupiters. We explore modeling biases, significant planetary albedos, non-local thermodynamic equilibrium or other thermal emission, significant internal energy generation, and misidentification of brown dwarfs, low-mass stars, or stellar blends as possible causes of both the excess emission and its correlation with expected planetary temperature. Although we find that no single cause is able to explain all of the planet candidates, significant planetary albedos, with a general trend of increasing planetary albedos with decreasing atmospheric temperatures, are able to explain most of the systems. Identifying systems that we deem likely to be low-mass stars or stellar blends, we estimate an 11% false-positive rate in the current Kepler planet candidate sample of hot Jupiters. We also establish robust upper limits on the eclipse depth for the remaining systems and find that the emission of a significant fraction of these systems is consistent with the planets having very low albedos, i.e., at least 30% of all systems have Ag< 0.3 at 1σ confidence levels. This result augments the current number of constrained exoplanetary albedos and extends the sample of low albedo determinations to planets with temperatures as low as 1200 K. Finally, we note that continued observations with the Kepler spacecraft and improved techniques for the removal of systematic noise in the Kepler data are needed to better characterize these systems.

Abstract Copyright:

Journal keyword(s): methods: data analysis - planetary systems - techniques: photometric

VizieR on-line data: <Available at CDS (J/AJ/143/39): table1.dat table2.dat table3.dat>

Simbad objects: 90

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2012AJ....143...39C and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact