SIMBAD references

2012ApJ...746...43R - Astrophys. J., 746, 43 (2012/February-2)

Radius-dependent angular momentum evolution in low-mass stars. I.


Abstract (from CDS):

Angular momentum evolution in low-mass stars is determined by initial conditions during star formation, stellar structure evolution, and the behavior of stellar magnetic fields. Here we show that the empirical picture of angular momentum evolution arises naturally if rotation is related to magnetic field strength instead of to magnetic flux and formulate a corrected braking law based on this. Angular momentum evolution then becomes a strong function of stellar radius, explaining the main trends observed in open clusters and field stars at a few Gyr: the steep transition in rotation at the boundary to full convection arises primarily from the large change in radius across this boundary and does not require changes in dynamo mode or field topology. Additionally, the data suggest transient core-envelope decoupling among solar-type stars and field saturation at longer periods in very low mass stars. For solar-type stars, our model is also in good agreement with the empirical Skumanich law. Finally, in further support of the theory, we show that the predicted age at which low-mass stars spin down from the saturated to unsaturated field regimes in our model corresponds remarkably well to the observed lifetime of magnetic activity in these stars.

Abstract Copyright:

Journal keyword(s): stars: low-mass - stars: magnetic field - stars: rotation

Simbad objects: 7

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2012ApJ...746...43R and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact