SIMBAD references

2012ApJ...748..147W - Astrophys. J., 748, 147 (2012/April-1)

Clumpy accretion onto black holes. I. Clumpy-advection-dominated accretion flow structure and radiation.

WANG J.-M., CHENG C. and LI Y.-R.

Abstract (from CDS):

We investigate the dynamics of clumps embedded in and confined by the advection-dominated accretion flows (ADAFs), in which collisions among the clumps are neglected. We start from the collisionless Boltzmann equation and assume that interaction between the clumps and the ADAF is responsible for transporting the angular momentum of clumps outward. The inner edge of the clumpy-ADAF is set to be the tidal radius of the clumps. We consider strong- and weak-coupling cases, in which the averaged properties of clumps follow the ADAF dynamics and are mainly determined by the black hole potential, respectively. We propose the analytical solution of the dynamics of clumps for the two cases. The velocity dispersion of clumps is one magnitude higher than the ADAF for the strong-coupling case. For the weak-coupling case, we find that the mean radial velocity of clumps is linearly proportional to the coefficient of the drag force. We show that the tidally disrupted clumps would lead to an accumulation of the debris to form a debris disk in the Shakura-Sunyaev regime. The entire hot ADAF will be efficiently cooled down by photons from the debris disk, giving rise to a collapse of the ADAF, and quench the clumpy accretion. Subsequently, evaporation of the collapsed ADAF drives resuscitate of a new clumpy-ADAF, resulting in an oscillation of the global clumpy-ADAF. Applications of the present model are briefly discussed to X-ray binaries, low ionization nuclear emission regions, and BL Lac objects.

Abstract Copyright:

Journal keyword(s): accretion, accretion disks - black hole physics - hydrodynamics

Simbad objects: 21

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2012ApJ...748..147W and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact