SIMBAD references

2012ApJ...754...71K - Astrophys. J., 754, 71 (2012/July-3)

Radiation-hydrodynamic simulations of the formation of orion-like star clusters. II. The initial mass function from winds, turbulence, and radiation.


Abstract (from CDS):

We report a series of simulations of the formation of a star cluster similar to the Orion Nebula Cluster (ONC), including both radiative transfer and protostellar outflows, and starting from both smooth and self-consistently turbulent initial conditions. Each simulation forms >150 stars and brown dwarfs, yielding a stellar mass distribution that ranges from <0.1 M to >10 M. We show that a simulation that begins with self-consistently turbulent density and velocity fields embedded in a larger turbulent volume, and that includes protostellar outflows, produces an initial mass function (IMF) that is consistent both with that of the ONC and the Galactic field, at least within the statistical power provided by the number of stars formed in our simulations. This is the first simulation published to date that reproduces the observed IMF in a cluster large enough to contain massive stars, and where the peak of the mass function is determined by a fully self-consistent calculation of gas thermodynamics rather than a hand-imposed equation of state. This simulation also produces a star formation rate that, while still somewhat too high, is much closer to observed values than if we omit either the larger turbulent volume or the outflows. Moreover, we show that the combination of outflows, self-consistently turbulent initial conditions, and turbulence continually fed by motions on scales larger than that of the protocluster yields an IMF that is in agreement with observations and invariant with time, resolving the "overheating" problem in which simulations without these features have an IMF peak that shifts to progressively higher masses over time as more and more of the gas is heated, inconsistent with the observed invariance of the IMF. The simulation that matches the observed IMF also qualitatively reproduces the observed trend of stellar multiplicity strongly increasing with mass. We show that this simulation produces massive stars from distinct massive cores whose properties are consistent with those of observed massive cores. However, the stars formed in these cores also undergo dynamical interactions as they accrete that naturally produce Trapezium-like hierarchical multiple systems of massive stars.

Abstract Copyright:

Journal keyword(s): ISM: clouds - radiative transfer - stars: formation - stars: luminosity function, mass function - turbulence

Simbad objects: 3

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2012ApJ...754...71K and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact