SIMBAD references

2012ApJ...754...83B - Astrophys. J., 754, 83 (2012/August-1)

UV-continuum slopes at z ∼ 4-7 from the HUDF09+ERS+CANDELS observations: discovery of a well-defined UV color-magnitude relationship for z ≥ 4 star-forming galaxies.

BOUWENS R.J., ILLINGWORTH G.D., OESCH P.A., FRANX M., LABBE I., TRENTI M., VAN DOKKUM P., CAROLLO C.M., GONZALEZ V., SMIT R. and MAGEE D.

Abstract (from CDS):

Ultra-deep Advanced Camera for Surveys (ACS) and WFC3/IR HUDF+HUDF09 data, along with the wide-area GOODS+ERS+CANDELS data over the CDF-S GOODS field, are used to measure UV colors, expressed as the UV-continuum slope β, of star-forming galaxies over a wide range of luminosity (0.1L*_ z = 3_ to 2L*_z = 3_) at high redshift (z ∼ 7 to z ∼ 4). β is measured using all ACS and WFC3/IR passbands uncontaminated by Lyα and spectral breaks. Extensive tests show that our β measurements are only subject to minimal biases. Using a different selection procedure, Dunlop et al. recently found large biases in their β measurements. To reconcile these different results, we simulated both approaches and found that β measurements for faint sources are subject to large biases if the same passbands are used both to select the sources and to measure β. High-redshift galaxies show a well-defined rest-frame UV color-magnitude (CM) relationship that becomes systematically bluer toward fainter UV luminosities. No evolution is seen in the slope of the UV CM relationship in the first 1.5 Gyr, though there is a small evolution in the zero point to redder colors from z ∼ 7 to z ∼ 4. This suggests that galaxies are evolving along a well-defined sequence in the LUV-color (β) plane (a "star-forming sequence"?). Dust appears to be the principal factor driving changes in the UV color β with luminosity. These new larger β samples lead to improved dust extinction estimates at z ∼ 4-7 and confirm that the extinction is essentially zero at low luminosities and high redshifts. Inclusion of the new dust extinction results leads to (1) excellent agreement between the star formation rate (SFR) density at z ∼ 4-8 and that inferred from the stellar mass density; and (2) to higher specific star formation rates (SSFRs) at z ≳ 4, suggesting that the SSFR may evolve modestly (by factors of ∼2) from z ∼ 4-7 to z ∼ 2.

Abstract Copyright:

Journal keyword(s): galaxies: evolution - galaxies: high-redshift

VizieR on-line data: <Available at CDS (J/ApJ/754/83): table8.dat>

Status at CDS : All or part of tables of objects could be ingested in SIMBAD with priority 2.

Simbad objects: 4

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2012ApJ...754...83B and select 'bookmark this link' or equivalent in the popup menu