2012ApJ...760..107G


Query : 2012ApJ...760..107G

2012ApJ...760..107G - Astrophys. J., 760, 107 (2012/December-1)

Infrared study of fullerene planetary nebulae.

GARCIA-HERNANDEZ D.A., VILLAVER E., GARCIA-LARIO P., ACOSTA-PULIDO J.A., MANCHADO A., STANGHELLINI L., SHAW R.A. and CATALDO F.

Abstract (from CDS):

We present a study of 16 planetary nebulae (PNe) where fullerenes have been detected in their Spitzer Space Telescope spectra. This large sample of objects offers a unique opportunity to test conditions of fullerene formation and survival under different metallicity environments because we are analyzing five sources in our own Galaxy, four in the Large Magellanic Cloud (LMC), and seven in the Small Magellanic Cloud (SMC). Among the 16 PNe studied, we present the first detection of C60(and possibly also C70) fullerenes in the PN M 1-60 as well as of the unusual ∼6.6, 9.8, and 20 µm features (attributed to possible planar C24) in the PN K 3-54. Although selection effects in the original samples of PNe observed with Spitzer may play a potentially significant role in the statistics, we find that the detection rate of fullerenes in C-rich PNe increases with decreasing metallicity (∼5% in the Galaxy, ∼20% in the LMC, and ∼44% in the SMC) and we interpret this as a possible consequence of the limited dust processing occurring in Magellanic Cloud (MC) PNe. CLOUDY photoionization modeling matches the observed IR fluxes with central stars that display a rather narrow range in effective temperature (∼30,000-45,000 K), suggesting a common evolutionary status of the objects and similar fullerene formation conditions. Furthermore, the data suggest that fullerene PNe likely evolve from low-mass progenitors and are usually of low excitation. We do not find a metallicity dependence on the estimated fullerene abundances. The observed C60 intensity ratios in the Galactic sources confirm our previous finding in the MCs that the fullerene emission is not excited by the UV radiation from the central star. CLOUDY models also show that line- and wind-blanketed model atmospheres can explain many of the observed [Ne III]/[Ne II] ratios using photoionization, suggesting that possibly the UV radiation from the central star, and not shocks, is triggering the decomposition of the circumstellar dust grains. With the data at hand, we suggest that the most likely explanation for the formation of fullerenes and graphene precursors in PNe is that these molecular species are built from the photochemical processing of a carbonaceous compound with a mixture of aromatic and aliphatic structures similar to that of hydrogenated amorphous carbon dust.

Abstract Copyright:

Journal keyword(s): astrochemistry - circumstellar matter - infrared: stars - planetary nebulae: general - stars: AGB and post-AGB

Simbad objects: 30

goto Full paper

goto View the references in ADS

Number of rows : 30
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 LHA 115-N 38 PN 00 49 51.6394321128 -73 44 21.396914988   16.1 15.382   16.913 ~ 48 0
2 LHA 115-N 43 PN 00 51 07.37 -73 57 37.7   15.96 15.341   16.444 ~ 35 0
3 LHA 115-N 42 PN 00 51 27.14 -72 26 11.7   16.32 16.741   16.922 ~ 64 0
4 LHA 115-N 44 PN 00 51 56.3619687720 -71 24 44.377505784   15.98 15.2     ~ 44 0
5 LHA 115-N 47 PN 00 51 58.311 -73 20 31.87     16.158   16.17 ~ 49 0
6 NAME SMC G 00 52 38.0 -72 48 01   2.79 2.2     ~ 11148 1
7 LIN 239 PN 00 53 11.15 -72 45 07.6     16.432   17.873 ~ 35 0
8 LHA 115-N 54 PN 00 56 05.3840663544 -70 19 25.878681444   16.0       ~ 37 0
9 LHA 115-N 70 PN 00 59 16.1329481088 -72 01 59.841527196   16.07 16.016   16.916 ~ 46 0
10 IRAS 01005+7910 pA* 01 04 45.5109702912 +79 26 46.357116648   11.04 10.87 10.85   B1.7Ibeq 73 0
11 LHA 115-N 87 PN 01 21 10.6470507816 -73 14 34.846684584   15.94 15.553   16.758 ~ 46 0
12 NAME Magellanic Clouds GrG 03 00 -71.0           ~ 7066 0
13 SMP LMC 2 PN 04 40 56.6962705344 -67 48 02.172617892 15.972 17.130 17.016   17.341 ~ 37 0
14 SMP LMC 25 Em* 05 06 23.9028944576 -69 03 19.174560611 15.264 15.831 14.897 16.42 16.455 ~ 40 0
15 LHA 120-N 123 PN 05 20 09.5114241744 -69 53 39.146648388 15.380 16.445 15.106 15.57 16.095 ~ 47 0
16 NAME LMC G 05 23 34.6 -69 45 22     0.4     ~ 17434 0
17 SNR J052501-693842 SNR 05 25 02.3 -69 38 39           ~ 401 1
18 M 42 HII 05 35 17 -05 23.4           ~ 4075 0
19 NGC 2023 RNe 05 41 37.9 -02 15 52           ~ 635 1
20 LHA 120-N 221 PN 06 18 58.024 -71 35 50.52   16.05       ~ 44 0
21 PN M 1-12 PN 07 19 21.4685188440 -21 43 55.402228344     14.08     WC10-11 117 0
22 V* DY Cen RC* 13 25 34.0847063328 -54 14 43.129581792     12.00     C-Hd/B5-6Ie 96 0
23 V* V854 Cen RC* 14 34 49.4024471640 -39 33 19.201288284   7.13 11.69     Ce 208 0
24 PN M 1-20 PN 17 28 57.6165015264 -19 15 54.033719256           ~ 128 0
25 PN Tc 1 PN 17 45 35.2879212240 -46 05 23.717122728   11.30 11.49     PCyg 263 0
26 PN M 1-60 PN 18 43 38.0929948608 -13 44 49.280634744           [WC4] 84 0
27 PN K 3-54 PN 20 04 58.6341865368 +25 26 37.272489324           ~ 43 0
28 NGC 7023 RNe 21 01 36.9 +68 09 48           ~ 702 0
29 IRAS 22574+6609 pA* 22 59 18.3496246536 +66 25 47.940897972       19.2   A1-6I 55 0
30 NAME Galactic Bulge reg ~ ~           ~ 4299 0

To bookmark this query, right click on this link: simbad:objects in 2012ApJ...760..107G and select 'bookmark this link' or equivalent in the popup menu