SIMBAD references

2012MNRAS.425.2212A - Mon. Not. R. Astron. Soc., 425, 2212-2227 (2012/September-3)

Numerical simulations of shocks encountering clumpy regions.

ALUZAS R., PITTARD J.M., HARTQUIST T.W., FALLE S.A.E.G. and LANGTON R.

Abstract (from CDS):

We present numerical simulations of the adiabatic interaction of a shock with a clumpy region containing many individual clouds. Our work incorporates a sub-grid turbulence model which for the first time makes this investigation feasible. We vary the Mach number of the shock, the density contrast of the clouds and the ratio of total cloud mass to intercloud mass within the clumpy region. Cloud material becomes incorporated into the flow. This `mass loading' reduces the Mach number of the shock and leads to the formation of a dense shell. In cases in which the mass loading is sufficient the flow slows enough that the shock degenerates into a wave. The interaction evolves through up to four stages: initially the shock decelerates; then its speed is nearly constant; next the shock accelerates as it leaves the clumpy region; finally, it moves at a constant speed close to its initial speed. Turbulence is generated in the post-shock flow as the shock sweeps through the clumpy region. Clouds exposed to turbulence can be destroyed more rapidly than a similar cloud in an `isolated' environment. The lifetime of a downstream cloud decreases with increasing cloud-to-intercloud mass ratio. We briefly discuss the significance of these results for starburst superwinds and galaxy evolution.

Abstract Copyright: 2012 The Authors Monthly Notices of the Royal Astronomical Society 2012 RAS

Journal keyword(s): hydrodynamics - shock waves - turbulence - ISM: clouds - ISM: kinematics and dynamics - galaxies: starburst

Status at CDS:  

Simbad objects: 7

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2012MNRAS.425.2212A and select 'bookmark this link' or equivalent in the popup menu


2020.05.28-14:56:07

© Université de Strasbourg/CNRS

    • Contact