SIMBAD references

2012MNRAS.427..167S - Mon. Not. R. Astron. Soc., 427, 167-179 (2012/November-3)

N-body models of globular clusters: metallicities, half-light radii and mass-to-light ratios.

SIPPEL A.C., HURLEY J.R., MADRID J.P. and HARRIS W.E.

Abstract (from CDS):

Size differences of ≈ 20percent between red (metal-rich) and blue (metal-poor) subpopulations of globular clusters have been observed, generating an ongoing debate as to whether these originate from projection effects or the difference in metallicity. We present direct N-body simulations of metal-rich and metal-poor stellar populations evolved to study the effects of metallicity on cluster evolution. The models start with N = 100000 stars and include primordial binaries. We also take metallicity-dependent stellar evolution and an external tidal field into account. We find no significant difference for the half-mass radii of those models, indicating that the clusters are structurally similar. However, utilizing observational tools to fit half-light (or effective) radii confirms that metallicity effects related to stellar evolution combined with dynamical effects such as mass segregation produce an apparent size difference of 17 per cent on average. The metallicity effect on the overall cluster luminosity also leads to higher mass-to-light ratios for metal-rich clusters.

Abstract Copyright: © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS

Journal keyword(s): methods: numerical - stars: evolution - stars: luminosity function, mass function - stars: mass-loss - globular clusters: general - galaxies: star clusters: general

Simbad objects: 6

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2012MNRAS.427..167S and select 'bookmark this link' or equivalent in the popup menu