SIMBAD references

2013A&A...553A..16L - Astronomy and Astrophysics, volume 553A, 16-16 (2013/5-1)

Chemical enrichment and physical conditions in I Zw 18.


Abstract (from CDS):

Low-metallicity star-forming dwarf galaxies are prime targets to understand the chemical enrichment of the interstellar medium. The H region contains the bulk of the mass in blue compact dwarfs, and it provides important constraints on the dispersal and mixing of heavy elements released by successive star-formation episodes. The metallicity of the H region is also a critical parameter to investigate the future star-formation history, as metals provide most of the gas cooling that will facilitate and sustain star formation. Our primary objective is to study the enrichment of the H region and the interplay between star-formation history and metallicity evolution. Our secondary objective is to constrain the spatial- and time-scales over which the H and H regions are enriched, and the mass range of stars responsible for the heavy element production. Finally, we aim to examine the gas heating and cooling mechanisms in the H region. We observed the most metal-poor star-forming galaxy in the Local Universe, IZw18, with the Cosmic Origin Spectrograph onboard Hubble. The abundances in the neutral gas are derived from far-ultraviolet absorption-lines (H, C, C *, N, O, ...) and are compared to the abundances in the H region. Models are constructed to calculate the ionization structure and the thermal processes. We investigate the gas cooling in the H region through physical diagnostics drawn from the fine-structure level of C+. We find that H region abundances are lower by a factor of ∼2 as compared to the H region. There is no differential depletion on dust between the H and H region. Using sulfur as a metallicity tracer, we calculate a metallicity of 1/46 Z (vs. 1/31 Z in the H region). From the study of the C/O, [O/Fe], and N/O abundance ratios, we propose that C, N, O, and Fe are mainly produced in massive stars. We argue that the H envelope may contain pockets of pristine gas with a metallicity essentially null. Finally, we derive the physical conditions in the H region by investigating the C * absorption line. The cooling rate derived from C * is consistent with collisions with H0 atoms in the diffuse neutral gas. We calculate the star-formation rate from the C * cooling rate assuming that photoelectric effect on dust is the dominant gas heating mechanism. Our determination is in good agreement with the values in the literature if we assume a low dust-to-gas ratio (∼2000 times lower than the Milky Way value).

Abstract Copyright:

Journal keyword(s): galaxies: abundances - HII regions - galaxies: individual: IZw18 - galaxies: ISM - galaxies: star formation - galaxies: evolution

Status at CDS:  

Simbad objects: 14

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2013A&A...553A..16L and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact