SIMBAD references

2013A&A...555A.107B - Astronomy and Astrophysics, volume 555A, 107-107 (2013/7-1)

The near-infrared spectral energy distribution of β Pictoris b.

BONNEFOY M., BOCCALETTI A., LAGRANGE A.-M., ALLARD F., MORDASINI C., BEUST H., CHAUVIN G., GIRARD J.H.V., HOMEIER D., APAI D., LACOUR S. and ROUAN D.

Abstract (from CDS):

A gas giant planet has previously been directly seen orbiting at 8-10AU within the debris disk of the ∼12Myr old star β Pictoris. The β Pictoris system offers the rare opportunity of both studying the physical and atmospheric properties of an exoplanet placed on a wide orbit and establishing its formation scenario. We aim to build the 1-5µm spectral energy distribution of the planet for the first time. Our goal is to provide secure and accurate constraints on its physical and chemical properties. We obtained J (1.265µm), H (1.66µm), and M' (4.78µm) band angular differential imaging of the system between 2011 and 2012. We used Markov chain Monte Carlo simulations of the astrometric data to revise constraints on the orbital parameters of the planet. Photometric measurements were compared to those of ultra-cool dwarfs and young companions. They were combined with existing photometry (2.18, 3.80, and 4.05µm) and compared to predictions from 7 PHOENIX-based atmospheric models in order to derive the atmospheric parameters (Teff, logg) of β Pictoris b. Predicted properties from (``hot-start'', ``cold-start'', and ``warm start'') evolutionary models were compared to independent constraints on the mass of β Pictoris b. We used planet-population synthesis models following the core-accretion paradigm to discuss the planet's possible origin. We detect the planetary companion in our four-epoch observations. We estimate J=14.0±0.3, H=13.5±0.2, and M'=11.0±0.3mag. Our new astrometry consolidates previous semi-major axis (8-10AU) and excentricity (e ≤0.15) estimates of the planet. The location of β Pictoris b in color-magnitude diagrams suggests it has spectroscopic properties similar to L0-L4 dwarfs. This enables one to derive Log10(L/L)=-3.87±0.08 for the companion. The analysis with atmospheric models reveals that the planet has a dusty atmosphere with Teff=1700±100K and logg=4.0±0.5. ``Hot-start'' evolutionary models give a new mass of 10+3–2MJup from Teff and 9+3–2MJup from luminosity. Predictions of ``cold-start'' models are still inconsistent with independent constraints on the planet mass. ``Warm-start'' models constrain the mass to M≥6MJup and the initial entropies to values (Sinit≥9.3Kb/baryon) midway between those considered for cold/hot-start models, but probably closer to those of hot-start models.

Abstract Copyright:

Journal keyword(s): instrumentation: adaptive optics - techniques: photometric - planetary systems - stars: individual: β Pic b - planets and satellites: atmospheres - planets and satellites: fundamental parameters

Simbad objects: 43

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2013A&A...555A.107B and select 'bookmark this link' or equivalent in the popup menu


2020.02.21-05:16:25

© Université de Strasbourg/CNRS

    • Contact