2013A&A...557L...2M


C.D.S. - SIMBAD4 rel 1.7 - 2019.10.24CEST02:45:44

2013A&A...557L...2M - Astronomy and Astrophysics, volume 557, L2-2 (2013/9-1)

Episodic modulations in supernova radio light curves from luminous blue variable supernova progenitor models.

MORIYA T.J., GROH J.H. and MEYNET G.

Abstract (from CDS):

Ideally, one would like to know which type of core-collapse supernovae (SNe) is produced by different progenitors and what channels of stellar evolution lead to these progenitors. These links have to be very well known to use the observed frequency of different types of SN events for probing the star formation rate and massive star evolution in different types of galaxies. We investigate the link between luminous blue variables (LBVs) as SN progenitors and the appearance of episodic light curve modulations in the radio light curves of the SN event. We use the 20M and 25M models with rotation at solar metallicity, which are part of an extended grid of stellar models computed by the Geneva team. At their pre-SN stage, these two models have recently been shown to have spectra similar to those of LBV stars, and they possibly explode as Type IIb SNe. Based on the wind properties before the explosion, we derive the density structure of their circumstellar medium. This structure is used as input for computing the SN radio light curve. We find that the 20M model shows radio light curves with episodic luminosity modulations similar to those observed in some Type IIb SNe. This occurs because the evolution of the 20M model terminates in a region of the HR diagram where radiative stellar winds present strong density variations, caused by the bistability limit. Ending its evolution in a zone of the HR diagram where no change of the mass-loss rates is expected, the 25M model presents no such modulations in its radio SN light curve. Our results reinforce the link between SN progenitors and LBV stars. We also confirm the existence of a physical mechanism for a single star to have episodic radio light curve modulations. In the case of the 25M progenitors, we do not obtain modulations in the radio light curve, but our models may miss some outbursting behavior in the late stages of massive stars.

Abstract Copyright:

Journal keyword(s): circumstellar matter - stars: mass-loss - supernovae: general - supernovae: individual: SN 2001ig - supernovae: individual: SN 2003bg

Simbad objects: 3

goto Full paper

goto View the reference in ADS

Number of rows : 3

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2019
#notes
1 SN 2003bg SN* 04 10 59.42 -31 24 50.3     15.0     SNIc 121 1
2 SN 1993J SN* 09 55 24.77476 +69 01 13.7026   10.8 12.0     SN.IIb 1226 1
3 SN 2001ig SN* 22 57 30.69 -41 02 25.9     14.5     SN.IIb 134 1

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2013A&A...557L...2M and select 'bookmark this link' or equivalent in the popup menu


2019.10.24-02:45:44

© Université de Strasbourg/CNRS

    • Contact