2013A&A...558A..39T


C.D.S. - SIMBAD4 rel 1.7 - 2020.08.10CEST15:09:12

2013A&A...558A..39T - Astronomy and Astrophysics, volume 558A, 39-39 (2013/10-1)

Evolution towards and beyond accretion-induced collapse of massive white dwarfs and formation of millisecond pulsars.

TAURIS T.M., SANYAL D., YOON S.-C. and LANGER N.

Abstract (from CDS):

Millisecond pulsars (MSPs) are generally believed to be old neutron stars (NSs), formed via type Ib/c core-collapse supernovae (SNe), which have been spun up to high rotation rates via accretion from a companion star in a low-mass X-ray binary (LMXB). In an alternative formation channel, NSs are produced via the accretion-induced collapse (AIC) of a massive white dwarf (WD) in a close binary. Here we investigate binary evolution leading to AIC and examine if NSs formed in this way can subsequently be recycled to form MSPs and, if so, how they can observationally be distinguished from pulsars formed via the standard core-collapse SN channel in terms of their masses, spins, orbital periods and space velocities. Numerical calculations with a detailed stellar evolution code were used for the first time to study the combined pre- and post-AIC evolution of close binaries. We investigated the mass transfer onto a massive WD (treated as a point mass) in 240 systems with three different types of non-degenerate donor stars: main-sequence stars, red giants, and helium stars. When the WD is able to accrete sufficient mass (depending on the mass-transfer rate and the duration of the accretion phase) we assumed it collapses to form a NS and we studied the dynamical effects of this implosion on the binary orbit. Subsequently, we followed the mass-transfer epoch which resumes once the donor star refills its Roche lobe and calculated the continued LMXB evolution until the end. We show that recycled pulsars may form via AIC from all three types of progenitor systems investigated and find that the final properties of the resulting MSPs are, in general, remarkably similar to those of MSPs formed via the standard core-collapse SN channel. However, as a consequence of the fine-tuned mass-transfer rate necessary to make the WD grow in mass, the resultant MSPs created via the AIC channel preferentially form in certain orbital period intervals. In addition, their predicted small space velocities can also be used to identify them observationally. The production time of NSs formed via AIC can exceed 10 Gyr which can therefore explain the existence of relatively young NSs in globular clusters. Our calculations are also applicable to progenitor binaries of SNe Ia under certain conditions.

Abstract Copyright:

Journal keyword(s): binaries: close - accretion, accretion disks - white dwarfs - supernovae: general - stars: neutron - X-rays: binaries

Simbad objects: 18

goto Full paper

goto View the reference in ADS

Number of rows : 18

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2020
#notes
1 PSR J0348+0432 Psr 03 48 43.6365407296 +04 32 11.460202882           ~ 154 1
2 PSR J0823+0159 Psr 08 23 09.788 +01 59 12.56           DA 210 0
3 V* KZ TrA LXB 16 32 16.79 -67 27 39.3 17.40 18.60 18.5     ~ 524 1
4 V* HZ Her LXB 16 57 49.8110797681 +35 20 32.487435684 11.90 14.89 13.63 13.88   B3/6ep 1924 0
5 PSR B1718-19 Psr 17 21 01.48 -19 36 51.0           ~ 89 1
6 PSR J1744-3922 Psr 17 44 02.67 -39 22 21.1           ~ 14 1
7 2EG J1746-2852 LXB 17 44 33.09 -28 44 27.0           ~ 485 0
8 PSR J1745-0952 Psr 17 45 09.1400 -09 52 39.670           ~ 20 0
9 IGR J17480-2446 LXB 17 48 04.831 -24 46 48.87           ~ 150 0
10 Cl Terzan 5 Cl* 17 48 05.00 -24 46 48.0           ~ 697 1
11 PSR B1745-20A Psr 17 48 52.689 -20 21 39.70           ~ 39 1
12 PSR J1802-2124 Psr 18 02 05.44 -21 24 02.9           ~ 58 1
13 PSR J1810-2005 Psr 18 10 58.988 -20 05 08.30           ~ 30 0
14 PSR J1820-30A Psr 18 23 40.4842 -30 21 39.920           ~ 127 1
15 PSR J1823-3021C Psr 18 23 40.5 -24 59 51           ~ 8 0
16 PSR B1831-00 Psr 18 34 17.25 -00 10 53.3           DA 90 0
17 SS 433 HXB 19 11 49.5645897701 +04 58 57.824087535   16.3 13.0     A7Ib: 1937 3
18 V* V1341 Cyg LXB 21 44 41.1544523872 +38 19 17.065856122 15.00 15.13 14.68 15.00   A9III 1071 1

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2013A&A...558A..39T and select 'bookmark this link' or equivalent in the popup menu


2020.08.10-15:09:12

© Université de Strasbourg/CNRS

    • Contact