SIMBAD references

2013A&A...559A.115M - Astronomy and Astrophysics, volume 559A, 115-115 (2013/11-1)

Galactic chemical evolution of sulphur. Sulphur abundances from the [SI] λ1082 nm line in giants.

MATROZIS E., RYDE N. and DUPREE A.K.

Abstract (from CDS):

The Galactic chemical evolution of sulphur is still under debate. At low metallicities some studies find no correlation between [S/Fe] and [Fe/H], which is typical for α-elements, while others find [S/Fe] increasing towards lower metallicities, and still others find a combination of the two. Each scenario has different implications for the Galactic chemical evolution of sulphur. The aim of this study is to contribute to the discussion on the Galactic chemical evolution of sulphur by deriving sulphur abundances from non-local thermodynamic equilibrium (LTE) insensitive spectral diagnostics in disk and halo stars with homogeneously determined stellar parameters. We derived effective temperatures from photometric colours, surface gravities from stellar isochrones and Bayesian estimation, and metallicities and sulphur abundances from spectrum synthesis. We derived sulphur abundances from the [SI] λ1082nm line in 39 mostly cool and metal-poor giants using 1D LTE MARCS model atmospheres to model our high-resolution near-infrared spectra obtained with the VLT, NOT, and Gemini South telescopes. We derive homogeneous stellar parameters for 29 of the 39 stars. Our results argue for a chemical evolution of sulphur that is typical for α-elements, contrary to some previous studies that have found high sulphur abundances ([S/Fe]>0.6) for stars with -2.5<[Fe/H]←1. Our abundances are systematically higher by about 0.1dex than those of other studies that arrived at similar conclusions using other sulphur diagnostics. We find the [SI] line to be a valuable diagnostic of sulphur abundances in cool giants down to [Fe/H]≃-2.3. We argue that a homogeneous determination of stellar parameters is necessary, since the derived abundances are sensitive to them. Our results ([S/Fe]) agree reasonably well with predictions of contemporary models of Galactic chemical evolution. In these models sulphur is predominantly created in massive stars by oxygen burning and is ejected into the interstellar medium during Type II supernovae explosions. Systematic differences with previous studies most likely fall within modelling uncertainties.

Abstract Copyright:

Journal keyword(s): Galaxy: evolution - stars: fundamental parameters - stars: abundances - infrared: stars

Simbad objects: 41

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2013A&A...559A.115M and select 'bookmark this link' or equivalent in the popup menu


2019.12.12-13:01:23

© Université de Strasbourg/CNRS

    • Contact