2013ApJ...762..103K


Query : 2013ApJ...762..103K

2013ApJ...762..103K - Astrophys. J., 762, 103 (2013/January-2)

Regulation of black hole winds and jets across the mass scale.

KING A.L., MILLER J.M., RAYMOND J., FABIAN A.C., REYNOLDS C.S., GULTEKIN K., CACKETT E.M., ALLEN S.W., PROGA D. and KALLMAN T.R.

Abstract (from CDS):

We present a study of the mechanical power generated by both winds and jets across the black hole mass scale. We begin with the study of ionized X-ray winds and present a uniform analysis using Chandra grating spectra. The high-quality grating spectra facilitate the characterization of the outflow velocity, ionization, and column density of the absorbing gas. We find that the kinetic power of the winds, derived from these observed quantities, scales with increasing bolometric luminosity as log (L_wind, 42/Cv_) = (1.58 ±0.07)log (L_Bol, 42_) - (3.19±0.19). This suggests that supermassive black holes may be more efficient than stellar-mass black holes in launching winds, per unit filling factor, Cv. If the black hole binary (BHB) and active galactic nucleus (AGN) samples are fit individually, the slopes flatten to αBHB = 0.91±0.31 and αAGN = 0.63±0.30 (formally consistent within errors). The broad fit and individual fits both characterize the data fairly well, and the possibility of common slopes may point to common driving mechanisms across the mass scale. For comparison, we examine jet production, estimating jet power based on the energy required to inflate local bubbles. The jet relation is log (L_Jet, 42_) = (1.18±0.24)log (L_Bondi, 42_) - (0.96±0.43). The energetics of the bubble associated with Cygnus X-1 are particularly difficult to determine, and the bubble could be a background supernova remnant. If we exclude Cygnus X-1 from our fits, then the jets follow a relation consistent with the winds, but with a higher intercept, log (L_Jet, 42_) = (1.34±0.50)log (L_Bondi, 42_) - (0.80±0.82). The formal consistency in the wind and jet scaling relations, when assuming that LBol and LBondiare both proxies for mass accretion rate, suggests that a common launching mechanism may drive both flows; magnetic processes, such as magnetohydrodynamics and magnetocentrifugal forces, are viable possibilities. We also examine winds that are moving at especially high velocities, v > 0.01c. These ultra-fast outflows tend to resemble the jets more than the winds in terms of outflow power, indicating that we may be observing a regime in which winds become jets. A transition at approximately LBol~ 10–2 LEdd is apparent when outflow power is plotted versus Eddington fraction. At low Eddington fractions, the jet power is dominant, and at high Eddington fractions, the wind power is dominant. This study allows for the total power from black hole accretion, both mechanical and radiative, to be characterized in a simple manner and suggests possible connections between winds and jets. X-ray wind data and jet cavity data will enable stronger tests.

Abstract Copyright:

Journal keyword(s): accretion, accretion disks - black hole physics - galaxies: active - galaxies: jets

Simbad objects: 32

goto Full paper

goto View the references in ADS

Number of rows : 32
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 NGC 507 BiC 01 23 39.950 +33 15 22.22   13.0       ~ 440 3
2 3C 111 Sy1 04 18 21.2772425736 +38 01 35.801359968   19.75 18.05     ~ 951 1
3 QSO J0831+5245 QSO 08 31 41.7108197808 +52 45 17.616994560   19.2   14.5 13.9 ~ 551 1
4 NGC 3516 Sy1 11 06 47.4632200800 +72 34 07.298374656   13.12 12.40     ~ 1545 0
5 QSO B1115+080A QSO 11 18 16.951 +07 45 58.23   16.61 16.44     ~ 684 2
6 NGC 3783 Sy1 11 39 01.7096819040 -37 44 19.009642992   12.46 13.43 11.33 12.1 ~ 1648 0
7 NGC 4051 Sy1 12 03 09.6101337312 +44 31 52.682601288   11.08 12.92 9.94   ~ 2166 1
8 NGC 4151 Sy1 12 10 32.5759813872 +39 24 21.063527532   12.18 11.48     ~ 3693 2
9 M 84 Sy2 12 25 03.74333 +12 53 13.1393 12.67 12.09 10.49     ~ 1763 2
10 M 49 Sy2 12 29 46.8 +08 00 01   13.21 12.17     ~ 2094 2
11 M 87 AGN 12 30 49.42338414 +12 23 28.0436859 10.16 9.59 8.63   7.49 ~ 7197 3
12 M 89 LIN 12 35 39.80733343 +12 33 22.8308657 11.29 10.73 9.75     ~ 995 2
13 NGC 4593 Sy1 12 39 39.4435107024 -05 20 39.034988448   13.95 13.15     ~ 1090 0
14 NGC 4636 LIN 12 42 49.8333280080 +02 41 15.951929028   12.62 11.84     ~ 1117 1
15 NGC 4696 BiC 12 48 49.2724775784 -41 18 39.304053252   11.21   10.7   ~ 490 3
16 ESO 383-35 Sy1 13 35 53.7691256160 -34 17 44.160716796   13.89 13.61 8.9   ~ 1486 0
17 ESO 445-50 Sy1 13 49 19.2601801224 -30 18 34.213815504   13.81 13.66 12.18 12.35 ~ 804 0
18 NGC 5548 Sy1 14 17 59.5400291832 +25 08 12.603122268   14.35 13.73     ~ 2710 0
19 NGC 5846 BiC 15 06 29.253 +01 36 20.29   11.9   9.74   ~ 850 1
20 Mrk 290 Sy1 15 35 52.4031021552 +57 54 09.515660508   15.55 15.27     ~ 530 0
21 NGC 6166 Sy2 16 28 38.24470063 +39 33 04.2335319   12.78 11.78     ~ 763 5
22 X Nor X-1 LXB 16 34 01.610 -47 23 34.80           ~ 517 0
23 V* V1033 Sco HXB 16 54 00.137 -39 50 44.90   15.20 14.2 16.14   F5IV 1887 1
24 V* V821 Ara HXB 17 02 49.3876391280 -48 47 23.087954544 16.20 16.30 15.5     ~ 2079 0
25 [KRL2007b] 222 LXB 17 09 07.61 -36 24 25.7           ~ 284 1
26 NAME XTE J17464-3213 LXB 17 46 15.59637 -32 14 00.8600           ~ 745 0
27 [KRL2007b] 312 LXB 18 17 43.537 -33 01 07.80           ~ 171 0
28 FRL 49 Sy2 18 36 58.2335883144 -59 24 08.282326320   11.1   14.19   ~ 245 0
29 Granat 1915+105 HXB 19 15 11.55576 +10 56 44.9052           ~ 2628 0
30 HD 226868 HXB 19 58 21.6757355952 +35 12 05.784512688 9.38 9.72 8.91 8.42   O9.7Iabpvar 4337 0
31 Mrk 509 Sy1 20 44 09.7504483224 -10 43 24.727155528   13.35 13.12 10.7   ~ 1276 0
32 UGC 12163 Sy1 22 42 39.3363009144 +29 43 31.302092640   14.86 14.16     ~ 698 1

To bookmark this query, right click on this link: simbad:objects in 2013ApJ...762..103K and select 'bookmark this link' or equivalent in the popup menu