SIMBAD references

2013ApJ...765...34Q - Astrophys. J., 765, 34 (2013/March-1)

H2 CO and N2H+ in protoplanetary disks: evidence for a CO-ice regulated chemistry.


Abstract (from CDS):

We present Submillimeter Array (SMA) observations of H2 CO and N2H+ emission in the disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296 at 2''-6'' resolution and discuss the distribution of these species with respect to CO freezeout. The H2 CO and N2H+ emission toward HD 163296 does not peak at the continuum emission center that marks the stellar position but is instead significantly offset. Using a previously developed model for the physical structure of this disk, we show that the H2 CO observations are reproduced if H2 CO is present predominantly in the cold outer disk regions. A model where H2 CO is present only beyond the CO snow line (estimated at a radius of 160 AU) matches the observations well. We also show that the average H2 CO excitation temperature, calculated from two transitions of H2 CO observed in these two disks and a larger sample of disks around T Tauri stars in the DISCS (the Disk Imaging Survey of Chemistry with SMA) program, is consistent with the CO freezeout temperature of ∼20 K. In addition, we show that N2H+ and H2 CO line fluxes in disks are strongly correlated, indicative of co-formation of these species across the sample. Taken together, these results imply that H2 CO and N2H+ are generally present in disks only at low temperatures where CO depletes onto grains, consistent with fast destruction of N2H+ by gas-phase CO, and in situ formation of H2CO through hydrogenation of CO ice. In this scenario H2CO, CH3OH, and N2H+ emission in disks should appear as rings with the inner edge at the CO midplane snow line. This prediction can be tested directly using observations from ALMA with higher resolution and better sensitivity.

Abstract Copyright:

Journal keyword(s): astrochemistry - ISM: molecules - protoplanetary disks - radio lines: ISM - stars: formation - techniques: high angular resolution

Simbad objects: 17

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2013ApJ...765...34Q and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact