SIMBAD references

2013ApJ...773...48B - Astrophys. J., 773, 48 (2013/August-2)

The dependence of star formation efficiency on gas surface density.


Abstract (from CDS):

Studies by Lada et al. and Heiderman et al. have suggested that star formation mostly occurs above a threshold in gas surface density Σ of Σc∼ 120 M/pc2 (AK∼ 0.8). Heiderman et al. infer a threshold by combining low-mass star-forming regions, which show a steep increase in the star formation rate per unit area ΣSFRwith increasing Σ, and massive cores forming luminous stars which show a linear relation. We argue that these observations do not require a particular density threshold. The steep dependence of ΣSFR, approaching unity at protostellar core densities, is a natural result of the increasing importance of self-gravity at high densities along with the corresponding decrease in evolutionary timescales. The linear behavior of ΣSFR versus Σ in massive cores is consistent with probing dense gas in gravitational collapse, forming stars at a characteristic free-fall timescale given by the use of a particular molecular tracer. The low-mass and high-mass regions show different correlations between gas surface density and the area A spanned at that density, with A ∼ Σ–3 for low-mass regions and A ∼ Σ–1 for the massive cores; this difference, along with the use of differing techniques to measure gas surface density and star formation, suggests that connecting the low-mass regions with massive cores is problematic. We show that the approximately linear relationship between dense gas mass and stellar mass used by Lada et al. similarly does not demand a particular threshold for star formation and requires continuing formation of dense gas. Our results are consistent with molecular clouds forming by galactic hydrodynamic flows with subsequent gravitational collapse.

Abstract Copyright:

Journal keyword(s): ISM: clouds - ISM: structure - stars: formation

Simbad objects: 17

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2013ApJ...773...48B and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact