SIMBAD references

2013ApJ...779..178P - Astrophys. J., 779, 178 (2013/December-3)

The atomic and molecular content of disks around very low-mass stars and brown dwarfs.


Abstract (from CDS):

There is growing observational evidence that disk evolution is stellar-mass-dependent. Here, we show that these dependencies extend to the atomic and molecular content of disk atmospheres. We analyze a unique dataset of high-resolution Spitzer/IRS spectra from eight very low mass star and brown dwarf disks. We report the first detections of Ne+, H2, CO2, and tentative detections of H2 O toward these faint and low-mass disks. Two of our [Ne II] 12.81 µm emission lines likely trace the hot ( ≥ 5000 K) disk surface irradiated by X-ray photons from the central stellar/sub-stellar object. The H2S(2) and S(1) fluxes are consistent with arising below the fully or partially ionized surface traced by the [Ne II] emission in gas at ∼600 K. We confirm the higher C2H2/HCN flux and column density ratio in brown dwarf disks previously noted from low-resolution IRS spectra. Our high-resolution spectra also show that the HCN/H2O fluxes of brown dwarf disks are on average higher than those of T Tauri disks. Our LTE modeling hints that this difference extends to column density ratios if H2 O lines trace warm ≥ 600 K disk gas. These trends suggest that the inner regions of brown dwarf disks have a lower O/C ratio than those of T Tauri disks, which may result from a more efficient formation of non-migrating icy planetesimals. An O/C = 1, as inferred from our analysis, would have profound implications on the bulk composition of rocky planets that can form around very low mass stars and brown dwarfs.

Abstract Copyright:

Journal keyword(s): accretion, accretion disks - brown dwarfs - protoplanetary disks - stars: low-mass - stars: pre-main sequence

Simbad objects: 16

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2013ApJ...779..178P and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact