SIMBAD references

2014A&A...561A..42S - Astronomy and Astrophysics, volume 561A, 42-42 (2014/1-1)

Molecules in the transition disk orbiting T Chamaeleontis.


Abstract (from CDS):

We seek to establish the presence and properties of gas in the circumstellar disk orbiting T Cha, a nearby (d∼110 pc), relatively evolved (age ∼5-7 Myr) yet actively accreting 1.5 M T Tauri star. We used the Atacama Pathfinder Experiment (APEX) 12 m radiotelescope to search for submillimeter molecular emission from the T Cha disk, and we reanalyzed archival XMM-Newton imaging spectroscopy of T Cha to ascertain the intervening absorption due to disk gas along the line of sight to the star (NH). We detected submillimeter rotational transitions of 12CO, 13CO, HCN, CN, and HCO+ from the T Cha disk. The 12CO line (and possibly the 13CO line) appears to display a double-peaked line profile indicative of Keplerian rotation; hence, these molecular line observations constitute the first direct demonstration of the presence of cold molecular gas orbiting T Cha. Analysis of the CO emission line data indicates that the disk around T Cha has a mass (Mdisk,H2 = 80 M) similar to, but more compact (R_disk, CO_ ∼80 AU) than other nearby, evolved molecular disks (e.g., V4046 Sgr, TW Hya, MP Mus) in which cold molecular gas has been previously detected. The HCO+/13CO and HCN/13CO line ratios measured for T Cha appear similar to those of other evolved circumstellar disks (i.e., TW Hya and V4046 Sgr). The CN/13CO ratio appears somewhat weaker, but due to the low signal-to-noise ratio of our detection, this discrepancy is not strongly significant. Analysis of the XMM-Newton X-ray spectroscopic data shows that the atomic absorption NH toward T Cha is one to two orders of magnitude larger than toward the other nearby T Tauri with evolved disks, which are seen at much lower inclination angles. Furthermore, the ratio between atomic absorption and optical extinction NH/AV toward T Cha is higher than the typical value observed for the interstellar medium and young stellar objects in the Orion nebula cluster. This may suggest that the fraction of metals in the disk gas is higher than in the interstellar medium. However, an X-ray absorption model appropriate for the physical and chemical conditions of a circumstellar disk is required to address this issue. Our results confirm that pre-main-sequence stars older than ∼5 Myr retain cold molecular disks when accreting, and that those relatively evolved disks display similar physical and chemical properties.

Abstract Copyright:

Journal keyword(s): protoplanetary disks - submillimeter: stars - stars: pre-main sequence - stars: individual: T Cha

Simbad objects: 9

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2014A&A...561A..42S and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact