2014A&A...562A..45K


C.D.S. - SIMBAD4 rel 1.7 - 2020.11.25CET07:09:26

2014A&A...562A..45K - Astronomy and Astrophysics, volume 562A, 45-45 (2014/2-1)

Far-infrared molecular lines from low- to high-mass star forming regions observed with Herschel.

KARSKA A., HERPIN F., BRUDERER S., GOICOECHEA J.R., HERCZEG G.J., VAN DISHOECK E.F., SAN JOSE-GARCIA I., CONTURSI A., FEUCHTGRUBER H., FEDELE D., BAUDRY A., BRAINE J., CHAVARRIA L., CERNICHARO J., VAN DER TAK F.F.S. and WYROWSKI F.

Abstract (from CDS):

Our aim is to study the response of the gas-to-energetic processes associated with high-mass star formation and compare it with previously published studies on low- and intermediate-mass young stellar objects (YSOs) using the same methods. The quantified far-IR line emission and absorption of CO, H2O, OH, and [OI] reveals the excitation and the relative contribution of different atomic and molecular species to the gas cooling budget. Herschel/PACS spectra covering 55-190 µm are analyzed for ten high-mass star forming regions of luminosities Lbol∼104-106L and various evolutionary stages on spatial scales of ∼104 AU. Radiative transfer models are used to determine the contribution of the quiescent envelope to the far-IR CO emission. The close environments of high-mass protostars show strong far-IR emission from molecules, atoms, and ions. Water is detected in all 10 objects even up to high excitation lines, often in absorption at the shorter wavelengths and in emission at the longer wavelengths. CO transitions from J=14-13 up to typically 29-28 (Eu/kB∼580-2400K) show a single temperature component with a rotational temperature of Trot∼300K. Typical H2O excitation temperatures are Trot∼250K, while OH has Trot∼80K. Far-IR line cooling is dominated by CO (∼75%) and, to a smaller extent, by [OI] (∼20%), which becomes more important for the most evolved sources. H2O is less important as a coolant for high-mass sources because many lines are in absorption. Emission from the quiescent envelope is responsible for ∼45-85% of the total CO luminosity in high-mass sources compared with only ∼10% for low-mass YSOs. The highest-J lines (Jup≥20) originate most likely in shocks, based on the strong correlation of CO and H2O with physical parameters (Lbol, Menv) of the sources from low- to high-mass YSOs. The excitation of warm CO described by Trot∼300K is very similar for all mass regimes, whereas H2O temperatures are ∼100K high for high-mass sources compared with low-mass YSOs. The total far-IR cooling in lines correlates strongly with bolometric luminosity, consistent with previous studies restricted to low-mass YSOs. Molecular cooling (CO, H2O, and OH) is ∼4 times greater than cooling by oxygen atoms for all mass regimes. The total far-IR line luminosity is about 10–3 and 10–5 times lower than the dust luminosity for the low- and high-mass star forming regions, respectively.

Abstract Copyright:

Journal keyword(s): infrared: ISM - ISM: jets and outflows - stars: protostars - molecular processes - astrochemistry

Simbad objects: 34

goto Full paper

goto View the reference in ADS

Number of rows : 34

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2021
#notes
1 NAME W 3 IRS 5 Cluster Cl* 02 25 42 +62 06.1           ~ 73 1
2 LDN 1448 DNe 03 22.5 +30 35           ~ 469 0
3 [JCC87] IRAS 2A Y*O 03 28 55.55 +31 14 36.7           ~ 405 3
4 [JCC87] IRAS 4A Y*O 03 29 10.49 +31 13 30.8           ~ 611 1
5 [JCC87] IRAS 4 FIR 03 29 10.9 +31 13 26           ~ 468 0
6 [JCC87] IRAS 4B Y*O 03 29 12.058 +31 13 02.05           ~ 562 0
7 LDN 1489 DNe 04 04 47.5 +26 19 42           ~ 198 0
8 IRAS 04361+2547 Y*O 04 39 13.89767 +25 53 20.6340           ~ 185 1
9 LDN 1527 DNe 04 39 53 +25 45.0           ~ 508 0
10 TMC-1 MoC 04 41 45.9 +25 41 27           ~ 1382 0
11 NAME OMC-1 MoC 05 35 14 -05 22.4           ~ 1025 2
12 NAME Orion-KL SFR 05 35 14.16 -05 22 21.5           ~ 2030 1
13 LDN 1641 MoC 05 39.0 -07 00           ~ 429 0
14 [SMZ2000] L1643-S3 MMS 1 smm 05 39 55.9 -07 30 28           ~ 13 0
15 NGC 2071 RNe 05 47 10 +00 18.0           ~ 611 1
16 2MASS J08254384-5100326 Y*O 08 25 43.85 -51 00 32.7           ~ 298 1
17 IRAS 08448-4343 cor 08 46 33.8 -43 54 33           ~ 59 1
18 IRAS 08470-4321 cor 08 48 48.2 -43 32 25           ~ 42 0
19 IRAS 11051-7706 Y*O 11 06 46.025 -77 22 29.67           ~ 71 0
20 V* DK Cha Or* 12 53 17.2028372976 -77 07 10.727661977           F0 132 0
21 IRAS 15398-3359 Y*? 15 43 02.21016 -34 09 07.7112       18.38 21.72 ~ 131 0
22 OH 327.29 -0.58 cor 15 53 07.65 -54 37 06.1           ~ 41 0
23 NAME NGC 6334-I Cl* 17 20 53.35 -35 47 01.5           ~ 278 0
24 GAL 005.88-00.41 HII 18 00 30.388 -24 04 00.20           ~ 302 0
25 W 33a Y*O 18 14 39.0 -17 52 03           ~ 589 0
26 LDN 483 DNe 18 17 35 -04 39.8           ~ 215 0
27 NAME SH 2-68 FIR 1 cor 18 29 49.63 +01 15 21.9           ~ 238 2
28 OH 34.26 +0.15 SFR 18 53 18.54 +01 14 57.9           ~ 468 0
29 W 51e1 Rad 19 23 43.77 +14 30 25.9           ~ 115 0
30 RAFGL 2591 Y*O 20 29 25.03656 +40 11 20.3316           ~ 571 0
31 [MBS2007c] CygX-N44 Rad 20 39 01.01 +42 22 50.2           ~ 363 0
32 NAME NGC 7129 FIR 2 IR 21 44 01.5 +66 03 40           ~ 85 0
33 NGC 7538 OpC 23 13 37 +61 30.0           ~ 831 0
34 [WBN74] NGC 7538 IRS 1 Y*O 23 13 45.318 +61 28 11.69           ~ 369 3

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2014A&A...562A..45K and select 'bookmark this link' or equivalent in the popup menu


2020.11.25-07:09:26

© Université de Strasbourg/CNRS

    • Contact