SIMBAD references

2014A&A...564A.106T - Astronomy and Astrophysics, volume 564A, 106-106 (2014/4-1)

Ionization compression impact on dense gas distribution and star formation. Probability density functions around HII regions as seen by Herschel.

TREMBLIN P., SCHNEIDER N., MINIER V., DIDELON P., HILL T., ANDERSON L.D., MOTTE F., ZAVAGNO A., ANDRE P., ARZOUMANIAN D., AUDIT E., BENEDETTINI M., BONTEMPS S., CSENGERI T., DI FRANCESCO J., GIANNINI T., HENNEMANN M., NGUYEN LUONG Q., MARSTON A.P., PERETTO N., RIVERA-INGRAHAM A., RUSSEIL D., RYGL K.L.J., SPINOGLIO L. and WHITE G.J.

Abstract (from CDS):

Ionization feedback should impact the probability distribution function (PDF) of the column density of cold dust around the ionized gas. We aim to quantify this effect and discuss its potential link to the core and initial mass function (CMF/IMF). We used Herschel column density maps of several regions observed within the HOBYS key program in a systematic way: M 16, the Rosette and Vela C molecular clouds, and the RCW 120 HII region. We computed the PDFs in concentric disks around the main ionizing sources, determined their properties, and discuss the effect of ionization pressure on the distribution of the column density. We fitted the column density PDFs of all clouds with two lognormal distributions, since they present a ``double-peak'' or an enlarged shape in the PDF. Our interpretation is that the lowest part of the column density distribution describes the turbulent molecular gas, while the second peak corresponds to a compression zone induced by the expansion of the ionized gas into the turbulent molecular cloud. Such a double peak is not visible for all clouds associated with ionization fronts, but it depends on the relative importance of ionization pressure and turbulent ram pressure. A power-law tail is present for higher column densities, which are generally ascribed to the effect of gravity. The condensations at the edge of the ionized gas have a steep compressed radial profile, sometimes recognizable in the flattening of the power-law tail. This could lead to an unambiguous criterion that is able to disentangle triggered star formation from pre-existing star formation. In the context of the gravo-turbulent scenario for the origin of the CMF/IMF, the double-peaked or enlarged shape of the PDF may affect the formation of objects at both the low-mass and the high-mass ends of the CMF/IMF. In particular, a broader PDF is required by the gravo-turbulent scenario to fit the IMF properly with a reasonable initial Mach number for the molecular cloud. Since other physical processes (e.g., the equation of state and the variations among the core properties) have already been said to broaden the PDF, the relative importance of the different effects remains an open question.

Abstract Copyright:

Journal keyword(s): stars: formation - HII regions - ISM: structure - methods: observational

Simbad objects: 24

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2014A&A...564A.106T and select 'bookmark this link' or equivalent in the popup menu


2019.09.22-23:16:33

© Université de Strasbourg/CNRS

    • Contact