SIMBAD references

2014ApJ...780...97M - Astrophys. J., 780, 97 (2014/January-1)

Resolved imaging of the HR 8799 debris disk with Herschel.

MATTHEWS B., KENNEDY G., SIBTHORPE B., BOOTH M., WYATT M., BROEKHOVEN-FIENE H., MACINTOSH B. and MAROIS C.

Abstract (from CDS):

We present Herschel far-infrared and submillimeter maps of the debris disk associated with the HR 8799 planetary system. We resolve the outer disk emission at 70, 100, 160, and 250 µm and detect the disk at 350 and 500 µm. A smooth model explains the observed disk emission well. We observe no obvious clumps or asymmetries associated with the trapping of planetesimals that is a potential consequence of planetary migration in the system. We estimate that the disk eccentricity must be <0.1. As in previous work by Su et al., we find a disk with three components: a warm inner component and two outer components, a planetesimal belt extending from 100 to 310 AU, with some flexibility (±10 AU) on the inner edge, and the external halo that extends to ∼2000 AU. We measure the disk inclination to be 26°±3° from face-on at a position angle of 64° E of N, establishing that the disk is coplanar with the star and planets. The spectral energy distribution of the disk is well fit by blackbody grains whose semi-major axes lie within the planetesimal belt, suggesting an absence of small grains. The wavelength at which the spectrum steepens from blackbody, 47±30 µm, however, is short compared with other A star debris disks, suggesting that there are atypically small grains likely populating the halo. The PACS longer wavelength data yield a lower disk color temperature than do MIPS data (24 and 70 µm), implying two distinct halo dust-grain populations.

Abstract Copyright:

Journal keyword(s): circumstellar matter - planetary systems - stars: individual: HR 8799

Simbad objects: 9

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2014ApJ...780...97M and select 'bookmark this link' or equivalent in the popup menu


2019.09.19-15:48:35

© Université de Strasbourg/CNRS

    • Contact