SIMBAD references

2014ApJ...781...28M - Astrophys. J., 781, 28 (2014/January-3)

The TRENDS high-contrast imaging survey. IV. The occurrence rate of giant planets around M dwarfs.

MONTET B.T., CREPP J.R., JOHNSON J.A., HOWARD A.W. and MARCY G.W.

Abstract (from CDS):

Doppler-based planet surveys have discovered numerous giant planets but are incomplete beyond several AU. At larger star-planet separations, direct planet detection through high-contrast imaging has proven successful, but this technique is sensitive only to young planets and characterization relies upon theoretical evolution models. Here we demonstrate that radial velocity measurements and high-contrast imaging can be combined to overcome these issues. The presence of widely separated companions can be deduced by identifying an acceleration (long-term trend) in the radial velocity of a star. By obtaining high spatial resolution follow-up imaging observations, we rule out scenarios in which such accelerations are caused by stellar binary companions with high statistical confidence. We report results from an analysis of Doppler measurements of a sample of 111 M-dwarf stars with a median of 29 radial velocity observations over a median time baseline of 11.8 yr. By targeting stars that exhibit a radial velocity acceleration ("trend") with adaptive optics imaging, we determine that 6.5%±3.0% of M-dwarf stars host one or more massive companions with 1 < m/MJ< 13 and 0 < a < 20 AU. These results are lower than analyses of the planet occurrence rate around higher-mass stars. We find the giant planet occurrence rate is described by a double power law in stellar mass M and metallicity F ≡ [Fe/H] such that f(M,F) = 0.039–0.0280.056M0.8-0.9_+1.1^ 10^(3.8±1.2)F. Our results are consistent with gravitational microlensing measurements of the planet occurrence rate; this study represents the first model-independent comparison with microlensing observations.

Abstract Copyright:

Journal keyword(s): methods: observational - planets and satellites: detection - planets and satellites: fundamental parameters - techniques: high angular resolution - techniques: radial velocities

Simbad objects: 128

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2014ApJ...781...28M and select 'bookmark this link' or equivalent in the popup menu


2019.09.18-05:51:44

© Université de Strasbourg/CNRS

    • Contact