SIMBAD references

2014MNRAS.443.2204P - Mon. Not. R. Astron. Soc., 443, 2204-2222 (2014/September-3)

A dynamical model of the local cosmic expansion.

PENARRUBIA J., MA Y.-Z., WALKER M.G. and McCONNACHIE A.

Abstract (from CDS):

We combine the equations of motion that govern the dynamics of galaxies in the local volume with Bayesian techniques in order to fit orbits to published distances and velocities of galaxies within 3 Mpc. We find a Local Group (LG) mass 2.3±0.7x1012M that is consistent with the combined dynamical masses of M31 and the Milky Way, and a mass ratio 0.54^+0.23_-0.17 that rules out models where our Galaxy is more massive than M31 with ∼ 95 percent confidence. The Milky Way's circular velocity at the solar radius is relatively high, 245±23 km/s, which helps to reconcile the mass derived from the local Hubble flow with the larger value suggested by the `timing argument'. Adopting Planck's bounds on ΩΛ yields a (local) Hubble constant H0 = 67±5 km/s/Mpc which is consistent with the value found on cosmological scales. Restricted N-body experiments show that substructures tend to fall on to the LG along the Milky Way-M31 axis, where the quadrupole attraction is maximum. Tests against mock data indicate that neglecting this effect slightly overestimates the LG mass without biasing the rest of model parameters. We also show that both the time dependence of the LG potential and the cosmological constant have little impact on the observed local Hubble flow.

Abstract Copyright: © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society (2014)

Journal keyword(s): Galaxy: fundamental parameters - Galaxy: kinematics and dynamics - Local Group - cosmological parameters - dark energy - dark matter

Simbad objects: 40

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2014MNRAS.443.2204P and select 'bookmark this link' or equivalent in the popup menu


2020.01.24-09:15:23

© Université de Strasbourg/CNRS

    • Contact