SIMBAD references

2015A&A...576A.121M - Astronomy and Astrophysics, volume 576A, 121-121 (2015/4-1)

Performance of the VLT Planet Finder SPHERE. II. Data analysis and results for IFS in laboratory.

MESA D., GRATTON R., ZURLO A., VIGAN A., CLAUDI R.U., ALBERI M., ANTICHI J., BARUFFOLO A., BEUZIT J.-L., BOCCALETTI A., BONNEFOY M., COSTILLE A., DESIDERA S., DOHLEN K., FANTINEL D., FELDT M., FUSCO T., GIRO E., HENNING T., KASPER M., LANGLOIS M., MAIRE A.-L., MARTINEZ P., MOELLER-NILSSON O., MOUILLET D., MOUTOU C., PAVLOV A., PUGET P., SALASNICH B., SAUVAGE J.-F., SISSA E., TURATTO M., UDRY S., VAKILI F., WATERS R. and WILDI F.

Abstract (from CDS):

We present the performance of the Integral Field Spectrograph (IFS) of SPHERE, the high-contrast imager for the ESO VLT telescope designed to perform imaging and spectroscopy of extrasolar planets, obtained from tests performed at the Institut de Planetologie et d'Astrophysique de Grenoble facility during the integration phase of the instrument. The tests were performed using the instrument software purposely prepared for SPHERE. The output data were reduced applying the SPHERE data reduction and handling software, adding an improved spectral deconvolution procedure. To this aim, we prepared an alternative procedure for the spectral subtraction exploiting the principal component analysis algorithm. Moreover, a simulated angular differential imaging procedure was also implemented to estimate how the instrument performed once this procedure was applied at telescope. The capability of the IFS to faithfully retrieve the spectra of the detected faint companions was also considered. We found that the application of the updated version of the spectral deconvolution procedure alone, when the algorithm throughput is properly taken into account, gives us a 5σ limiting contrast of the order of 5x10–6 or slightly better. The further application of the angular differential imaging procedure on these data should allow us to improve the contrast by one order of magnitude down to around 7x10–7 at a separation of 0.3 arcsec. The application of a principal component analysis procedure that simultaneously uses spectral and angular data gives comparable results. Finally, we found that the reproducibility of the spectra of the detected faint companions is greatly improved when angular differential imaging is applied in addition to the spectral deconvolution.

Abstract Copyright:

Journal keyword(s): instrumentation: spectrographs - methods: data analysis - techniques: imaging spectroscopy - planetary systems

Simbad objects: 4

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2015A&A...576A.121M and select 'bookmark this link' or equivalent in the popup menu