SIMBAD references

2015A&A...580A.101O - Astronomy and Astrophysics, volume 580A, 101-101 (2015/8-1)

Temporal evolution of the size and temperature of Betelgeuse's extended atmosphere.


Abstract (from CDS):

Spatially resolved multi-wavelength centimeter continuum observations of cool evolved stars can not only constrain the morphology of the radio emitting regions, but can also directly probe the mean gas temperature at various depths of the star's extended atmosphere. Here, we use the Very Large Array (VLA) in the A configuration with the Pie Town (PT) Very Long Baseline Array (VLBA) antenna to spatially resolve the extended atmosphere of Betelgeuse over multiple epochs at 0.7, 1.3, 2.0, 3.5, and 6.1cm. The extended atmosphere deviates from circular symmetry at all wavelengths while at some epochs we find possible evidence for small pockets of gas significantly cooler than the mean global temperature. We find no evidence for the recently reported e-MERLIN radio hotspots in any of our multi-epoch VLA/PT data, despite having sufficient spatial resolution and sensitivity at short wavelengths, and conclude that these radio hotspots are most likely interferometric artefacts. The mean gas temperature of the extended atmosphere has a typical value of 3000K at 2R* and decreases to 1800K at 6R*, in broad agreement with the findings of the single epoch study from Lim et al. (1998Natur.392..575L). The overall temperature profile of the extended atmosphere between 2 R*≲r≲6R* can be described by a power law of the form Tgas(r)∝r–0.6, with temporal variability of a few 100K evident at some epochs. Finally, we present over 12yr of V band photometry, part of which overlaps our multi-epoch radio data. We find a correlation between the fractional flux density variability at V band with most radio wavelengths. This correlation is likely due to shock waves induced by stellar pulsations, which heat the inner atmosphere and ionize the more extended atmosphere through radiative means. Stellar pulsations may play an important role in exciting Betelgeuse's extended atmosphere.

Abstract Copyright:

Journal keyword(s): stars: atmospheres - stars: massive - stars: late-type - supergiants - stars: individual: Betelgeuse - stars: mass-loss

Simbad objects: 8

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2015A&A...580A.101O and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact