SIMBAD references

2015ApJ...805..154M - Astrophys. J., 805, 154 (2015/June-1)

Ruling out IC/CMB X-rays in PKS 0637-752 and the implications for TeV emission from large-scale quasar jets.


Abstract (from CDS):

The Chandra X-ray observatory has discovered dozens of resolved, kiloparsec-scale jets associated with powerful quasars in which the X-ray fluxes are observed to be much higher than the expected level based on the radio-optical synchrotron spectrum. The most popular explanation for the anomalously high and hard X-ray fluxes is that these jets do not decelerate significantly by the kiloparsec scale, but rather remain highly relativistic (Lorentz factors Γ ∼ 10). By adopting a small angle to the line of sight, the X-rays can thus be explained by inverse Compton upscattering of cosmic microwave background (CMB) photons (IC/CMB), where the observed emission is strongly Doppler boosted. Using over six years of Fermi monitoring data, we show that the expected hard, steady gamma-ray emission implied by the IC/CMB model is not seen in PKS 0637-752, the prototype jet for which this model was first proposed. IC/CMB emission is thus ruled out as the source of the X-rays, joining recent results for the jets in 3C 273 (using the same method) and PKS 1136-135 (using UV polarization). We further show that the Fermi observations give an upper limit of {delat} < 6.5 for the four brightest X-ray knots of PKS 0637-752, and derive an updated limit of {delat} < 7.8 for knots A and B1 of 3C 273 (assuming equipartition). Finally, we discuss the fact that high levels of synchrotron X-ray emission in a slow jet will unavoidably lead to a level of angle-integrated TeV emission which exceeds that of the TeV BL Lac class.

Abstract Copyright:

Journal keyword(s): galaxies: active - galaxies: jets - quasars: individual: (PKS 0637-752, 3C 273)

Simbad objects: 4

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2015ApJ...805..154M and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact