SIMBAD references

2015ApJ...815...60D - Astrophys. J., 815, 60 (2015/December-2)

Spectral eclipse timing.

DOBBS-DIXON I., AGOL E. and DEMING D.

Abstract (from CDS):

We utilize multi-dimensional simulations of varying equatorial jet strength to predict wavelength-dependent variations in the eclipse times of gas-giant planets. A displaced hot spot introduces an asymmetry in the secondary eclipse light curve that manifests itself as a measured offset in the timing of the center of eclipse. A multi-wavelength observation of secondary eclipse, one probing the timing of barycentric eclipse at short wavelengths and another probing at longer wavelengths, will reveal the longitudinal displacement of the hot spot and break the degeneracy between this effect and that associated with the asymmetry due to an eccentric orbit. The effect of time offsets was first explored in the IRAC wavebands by Williams et al. Here we improve upon their methodology, extend to a broad range of wavelengths, and demonstrate our technique on a series of multi-dimensional radiative-hydrodynamical simulations of HD 209458b with varying equatorial jet strength and hot-spot displacement. Simulations with the largest hot-spot displacement result in timing offsets of up to 100 s in the infrared. Though we utilize a particular radiative hydrodynamical model to demonstrate this effect, the technique is model independent. This technique should allow a much larger survey of hot-spot displacements with the James Webb Space Telescope than currently accessible with time-intensive phase curves, hopefully shedding light on the physical mechanisms associated with thermal energy advection in irradiated gas giants.

Abstract Copyright:

Journal keyword(s): hydrodynamics - methods: observational - planets and satellites: atmospheres - planets and satellites: individual: HD 209458b

Simbad objects: 6

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2015ApJ...815...60D and select 'bookmark this link' or equivalent in the popup menu


2019.09.16-23:20:36

© Université de Strasbourg/CNRS

    • Contact