SIMBAD references

2015ApJS..218...31J - Astrophys. J., Suppl. Ser., 218, 31 (2015/June-0)

Star formation history of the Milky Way halo traced by the Oosterhoff dichotomy among globular clusters.

JANG S. and LEE Y.-W.

Abstract (from CDS):

In our recent investigation of the Oosterhoff dichotomy in the multiple population paradigm, we have suggested that the RR Lyrae variables in the globular clusters (GCs) of Oosterhoff groups I, II, and III are produced mostly by first, second, and third generation stars (G1, G2, and G3), respectively. Here we show, for the first time, that the observed dichotomies in the inner and outer halo GCs can be naturally reproduced when these models are extended to all metallicity regimes, while maintaining reasonable agreements in the horizontal-branch type versus [Fe/H] correlations. In order to achieve this, however, specific star formation histories are required for the inner and outer halos. In the inner halo GCs, the star formation commenced and ceased earlier with a relatively short formation timescale between the subpopulations (∼0.5 Gyr), while in the outer halo, the formation of G1 was delayed by ∼0.8 Gyr with a more extended timescale between G1 and G2 (∼1.4 Gyr). This is consistent with the dual origin of the Milky Way halo. Despite the difference in detail, our models show that the Oosterhoff period groups observed in both outer and inner halo GCs are all manifestations of the ''population-shift'' effect within the instability strip, for which the origin can be traced back to the two or three discrete episodes of star formation in GCs.

Abstract Copyright:

Journal keyword(s): Galaxy: formation - Galaxy: halo - globular clusters: general - stars: horizontal-branch - stars: variables: RR Lyrae

Simbad objects: 55

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2015ApJS..218...31J and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact