SIMBAD references

2015MNRAS.447..836F - Mon. Not. R. Astron. Soc., 447, 836-845 (2015/February-2)

The dynamical fate of self-gravitating disc fragments after tidal downsizing.

FORGAN D., PARKER R.J. and RICE K.

Abstract (from CDS):

The gravitational instability model of planet/brown dwarf formation proposes that protostellar discs can fragment into objects with masses above a few Jupiter masses at large semimajor axis. Tidal downsizing may reduce both the object mass and semimajor axis. However, most studies of tidal downsizing end when the protostellar disc disperses, while the system is embedded in its parent star-forming region. To compare disc fragment descendants with exoplanet and brown dwarf observations, the subsequent dynamical evolution must be explored. We carry out N-body integrations of fragment-fragment scattering in multi-object star systems, and star systems embedded in substructured clusters. In both cases, we use initial conditions generated by population synthesis models of tidal downsizing. The scattering simulations produce a wide range of eccentricities. The ejection rate is around 25 percent. The ejecta mass distribution is similar to that for all objects, with a velocity dispersion consistent with those produced by full hydrodynamic simulations. The semimajor axis distribution after scattering extends to parsec scales. In the cluster simulations, 13 percent of the objects are ejected from their planetary system, and around 10 percent experience significant orbit modification. A small number of objects are recaptured on high-eccentricity, high-inclination orbits. The velocity distribution of ejecta is similar to that produced by fragment-fragment scattering. If fragment-fragment scattering and cluster stripping act together, then disc fragmentation should be efficient at producing free-floating substellar objects, and hence characterizing the free-floating planet population will provide strong constraints on the frequency of disc fragmentation.

Abstract Copyright: © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society (2014)

Journal keyword(s): accretion, accretion discs - methods: numerical - methods: statistical - planets and satellites: formation - stars: formation

Simbad objects: 2

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2015MNRAS.447..836F and select 'bookmark this link' or equivalent in the popup menu


2019.12.06-09:58:28

© Université de Strasbourg/CNRS

    • Contact