SIMBAD references

2015MNRAS.454.3299R - Mon. Not. R. Astron. Soc., 454, 3299-3310 (2015/December-2)

Environmental regulation of cloud and star formation in galactic bars.

RENAUD F., BOURNAUD F., EMSELLEM E., AGERTZ O., ATHANASSOULA E., COMBES F., ELMEGREEN B., KRALJIC K., MOTTE F. and TEYSSIER R.

Abstract (from CDS):

The strong time-dependence of the dynamics of galactic bars yields a complex and rapidly evolving distribution of dense gas and star forming regions. Although bars mainly host regions void of any star formation activity, their extremities can gather the physical conditions for the formation of molecular complexes and mini-starbursts. Using a sub-parsec resolution hydrodynamical simulation of a Milky Way-like galaxy, we probe these conditions to explore how and where bar (hydro-)dynamics favours the formation or destruction of molecular clouds and stars. The interplay between the kpc-scale dynamics (gas flows, shear) and the parsec-scale (turbulence) is key to this problem. We find a strong dichotomy between the leading and trailing sides of the bar, in term of cloud fragmentation and in the age distribution of the young stars. After orbiting along the bar edge, these young structures slow down at the extremities of the bar, where orbital crowding increases the probability of cloud-cloud collision. We find that such events increase the Mach number of the cloud, leading to an enhanced star formation efficiency and finally the formation of massive stellar associations, in a fashion similar to galaxy-galaxy interactions. We highlight the role of bar dynamics in decoupling young stars from the clouds in which they form, and discuss the implications on the injection of feedback into the interstellar medium (ISM), in particular in the context of galaxy formation.

Abstract Copyright: © 2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society (2015)

Journal keyword(s): methods: numerical - ISM: structure - Galaxy: structure

Errata: erratum vol. 463, p.251 (2016)

Simbad objects: 7

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2015MNRAS.454.3299R and select 'bookmark this link' or equivalent in the popup menu


2019.10.15-09:33:07

© Université de Strasbourg/CNRS

    • Contact