2016A&A...585A..74Y


C.D.S. - SIMBAD4 rel 1.7 - 2020.11.25CET07:25:20

2016A&A...585A..74Y - Astronomy and Astrophysics, volume 585A, 74-74 (2016/1-1)

Molecule survival in magnetized protostellar disk winds. II. Predicted H2O line profiles versus Herschel/HIFI observations.

YVART W., CABRIT S., PINEAU DES FORETS G. and FERREIRA J.

Abstract (from CDS):

The origin of molecular protostellar jets and their role in extracting angular momentum from the accreting system are important open questions in star formation research. In the first paper of this series we showed that a dusty magneto-hydrodynamic (MHD) disk wind appeared promising to explain the pattern of H2 temperature and collimation in the youngest jets. We wish to see whether the high-quality H2O emission profiles of low-mass protostars, observed for the first time by the HIFI spectrograph on board the Herschel satellite, remain consistent with the MHD disk wind hypothesis, and which constraints they would set on the underlying disk properties. We present synthetic H2O line profiles predictions for a typical MHD disk wind solution with various values of disk accretion rate, stellar mass, extension of the launching area, and view angle. We compare them in terms of line shapes and intensities with the HIFI profiles observed by the WISH key program towards a sample of 29 low-mass Class 0 and Class 1 protostars. A dusty MHD disk wind launched from 0.2-0.6AU to 3-25AU can reproduce to a remarkable degree the observed shapes and intensities of the broad H2O component observed in low-mass protostars, both in the fundamental 557GHz line and in more excited lines. Such a model also readily reproduces the observed correlation of 557GHz line luminosity with envelope density, if the infall rate at 1000AU is 1-3 times the disk accretion rate in the wind ejection region. It is also compatible with the typical disk size and bolometric luminosity in the observed targets. However, the narrower line profiles in Class 1 sources suggest that MHD disk winds in these sources, if present, would have to be slower and/or less water rich than in Class 0 sources. MHD disk winds appear as a valid (though not unique) option to consider for the origin of the broad H2O component in low-mass protostars. ALMA appears ideally suited to further test this model by searching for resolved signatures of the warm and slow wide-angle molecular wind that would be predicted.

Abstract Copyright:

Journal keyword(s): astrochemistry - line: profiles - magnetohydrodynamics (MHD) - stars: jets - stars: protostars - ISM: jets and outflows

Simbad objects: 36

goto Full paper

goto View the reference in ADS

Number of rows : 36

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2021
#notes
1 LDN 1448 DNe 03 22.5 +30 35           ~ 469 0
2 IRAS F03226+3033 Y*O 03 25 38.83 +30 44 06.2           ~ 304 0
3 [JCC87] IRAS 2A Y*O 03 28 55.55 +31 14 36.7           ~ 405 3
4 NAME HH 7-11 FIR 03 29 03.9 +31 16 06           ~ 333 0
5 [JCC87] IRAS 4A Y*O 03 29 10.49 +31 13 30.8           ~ 611 1
6 [JCC87] IRAS 4 FIR 03 29 10.9 +31 13 26           ~ 468 0
7 [JCC87] IRAS 4B Y*O 03 29 12.058 +31 13 02.05           ~ 562 0
8 NAME Perseus Cloud SFR 03 35.0 +31 13           ~ 1093 0
9 LDN 1489 DNe 04 04 47.5 +26 19 42           ~ 198 0
10 V* DG Tau Or* 04 27 04.6913654419 +26 06 16.041555299 13.57 13.97 10.50 12.28   K6Ve 940 1
11 LDN 1551 DNe 04 31 30.0 +18 12 30           ~ 773 1
12 RAFGL 5123 Y*O 04 31 34.07736 +18 08 04.9020           K3V/M3III 816 0
13 IRAS 04361+2547 Y*O 04 39 13.89767 +25 53 20.6340           ~ 185 1
14 IRAS 04365+2535 Y*O 04 39 35.19360 +25 41 44.7252           ~ 242 0
15 LDN 1527 DNe 04 39 53 +25 45.0           ~ 508 0
16 TMC-1 MoC 04 41 45.9 +25 41 27           ~ 1382 0
17 2MASS J08254384-5100326 Y*O 08 25 43.85 -51 00 32.7           ~ 298 1
18 Ass Cha T 2-21 TT* 11 06 15.3485848381 -77 21 56.737939872   12.58 11.01   9.35 G5Ve 123 0
19 IRAS 11051-7706 Y*O 11 06 46.025 -77 22 29.67           ~ 71 0
20 BHR 71 MoC 12 01 36.810 -65 08 49.22           ~ 120 0
21 V* DK Cha Or* 12 53 17.2028372976 -77 07 10.727661977           F0 132 0
22 V* FU Dra EB* 15 34 45.2141461351 +62 16 44.330023737       10.1   G0: 120 1
23 IRAS 15398-3359 Y*? 15 43 02.21016 -34 09 07.7112       18.38 21.72 ~ 131 0
24 GSS 30 Y*O 16 26 21.38160 -24 23 04.0524           ~ 200 1
25 IRAS 16285-2355 Y*O 16 31 35.65752 -24 01 29.4708           ~ 106 0
26 HBC 650 TT* 16 34 29.32 -15 47 01.4           K3.0 165 2
27 LDN 483 DNe 18 17 35 -04 39.8           ~ 215 0
28 NAME SH 2-68 FIR 1 cor 18 29 49.63 +01 15 21.9           ~ 238 2
29 NAME Serpens SMM 4 cor 18 29 57.1 +01 13 15           ~ 123 0
30 NAME SERPENS SMM 3 smm 18 29 59.7 +01 14 00           ~ 85 1
31 2MASS J19014805-3657219 Y*O 19 01 48.056 -36 57 21.95           ~ 96 0
32 HH 100 HH 19 01 49.1 -36 58 16           ~ 79 0
33 V* V710 CrA Or* 19 01 50.67792 -36 58 09.6132           K7: 117 0
34 LDN 723 DNe 19 18 12 +19 13.6           ~ 153 0
35 LDN 663 DNe 19 36 55 +07 34.4           ~ 562 0
36 LDN 1157 DNe 20 39 06.4 +68 02 13           ~ 493 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2016A&A...585A..74Y and select 'bookmark this link' or equivalent in the popup menu


2020.11.25-07:25:20

© Université de Strasbourg/CNRS

    • Contact