SIMBAD references

2016A&A...586A.143S - Astronomy and Astrophysics, volume 586A, 143-143 (2016/2-1)

Chaotic and stochastic processes in the accretion flows of the black hole X-ray binaries revealed by recurrence analysis.


Abstract (from CDS):

Both the well known microquasar GRS 1915+105, as well as its recently discovered analogue, IGR J17091-3624, exhibit variability that is characteristic of a deterministic chaotic system. Their specific kind of quasi-periodic flares that are observed in some states is intrinsically connected with the global structure of the accretion flow, which are governed by the nonlinear hydrodynamics. One plausible mechanism that is proposed to explain this kind of variability is the thermal-viscous instability that operates in the accretion disk. The purely stochastic variability that occurs because of turbulent conditions in the plasma, is quantified by the power density spectra and appears in practically all types of sources and their spectral states. We pose a question as to whether these two microquasars are one of a kind, or if the traces of deterministic chaos, and hence the accretion disk instability, may also be hidden in the observed variability of other sources. We focus on the black hole X-ray binaries that accrete at a high rate and are, therefore, theoretically prone to the development of radiation pressure-induced instability. To study the nonlinear behaviour of the X-ray sources and distinguish between the chaotic and stochastic nature of their emission, we propose a novel method, which is based on recurrence analysis. Widely known in other fields of physics, this powerful method is used here for the first time in an astrophysical context. We estimate the indications of deterministic chaos quantitatively, such as the Renyi's entropy for the observed time series, and we compare them with surrogate data. Using the observational data collected by the RXTE satellite, we reveal the oscillations pattern and the observable properties of six black hole systems. For five of them, we confirm the signatures of deterministic chaos being the driver of their observed variability. We test the method and confirm the deterministic nature of variability in the microquasars GRS 1915+105 and IGR J17091-3624. Furthermore, we also find significant traces of nonlinear dynamics in three other sources: GX 339-4, XTE J1550-564 and GRO J1655-40, particularly in the disk-dominated soft state, as well as in the intermediate states at the rising and declining phase of the outburst. Only for the source XTE J1650-500 no observation with such variability pattern was found. This is possibly due to the global accretion rate in this source being too small for the limit-cycle instability to develop.

Abstract Copyright:

Journal keyword(s): black hole physics - accretion, accretion disks - chaos - X-rays: binaries

Simbad objects: 6

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2016A&A...586A.143S and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact