2016A&A...587A..87C


Query : 2016A&A...587A..87C

2016A&A...587A..87C - Astronomy and Astrophysics, volume 587A, 87-87 (2016/3-1)

EUV-driven ionospheres and electron transport on extrasolar giant planets orbiting active stars.

CHADNEY J.M., GALAND M., KOSKINEN T.T., MILLER S., SANZ-FORCADA J., UNRUH Y.C. and YELLE R.V.

Abstract (from CDS):

The composition and structure of the upper atmospheres of extrasolar giant planets (EGPs) are affected by the high-energy spectrum of their host stars from soft X-rays to the extreme ultraviolet (EUV). This emission depends on the activity level of the star, which is primarily determined by its age. In this study, we focus upon EGPs orbiting K- and M-dwarf stars of different ages - {epsilon} Eridani, AD Leonis, AU Microscopii - and the Sun. X-ray and EUV (XUV) spectra for these stars are constructed using a coronal model. These spectra are used to drive both a thermospheric model and an ionospheric model, providing densities of neutral and ion species. Ionisation - as a result of stellar radiation deposition - is included through photo-ionisation and electron-impact processes. The former is calculated by solving the Lambert-Beer law, while the latter is calculated from a supra-thermal electron transport model. We find that EGP ionospheres at all orbital distances considered (0.1-1 AU) and around all stars selected are dominated by the long-lived H+ ion. In addition, planets with upper atmospheres where H2 is not substantially dissociated (at large orbital distances) have a layer in which H3+ is the major ion at the base of the ionosphere. For fast-rotating planets, densities of short-lived H3+ undergo significant diurnal variations, with the maximum value being driven by the stellar X-ray flux. In contrast, densities of longer-lived H+ show very little day/night variability and the magnitude is driven by the level of stellar EUV flux. The H3+ peak in EGPs with upper atmospheres where H2 is dissociated (orbiting close to their star) under strong stellar illumination is pushed to altitudes below the homopause, where this ion is likely to be destroyed through reactions with heavy species (e.g. hydrocarbons, water). The inclusion of secondary ionisation processes produces significantly enhanced ion and electron densities at altitudes below the main EUV ionisation peak, as compared to models that do not include electron-impact ionisation. We estimate infrared emissions from H3+, and while, in an H/H2/He atmosphere, these are larger from planets orbiting close to more active stars, they still appear too low to be detected with current observatories.

Abstract Copyright:

Journal keyword(s): planets and satellites: atmospheres - stars: activity - stars: low-mass - infrared: planetary systems

Simbad objects: 7

goto Full paper

goto View the references in ADS

Number of rows : 7
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 * eps Eri BY* 03 32 55.8444911587 -09 27 29.739493865 5.19 4.61 3.73 3.00 2.54 K2V 1932 1
2 V* AD Leo Er* 10 19 36.2808181226 +19 52 12.010446571   10.82 9.52 9.19   dM3 1340 1
3 Ross 905b Pl 11 42 11.0933350978 +26 42 23.650782778           ~ 810 1
4 HD 189733 BY* 20 00 43.7129433648 +22 42 39.073143456 9.241 8.578 7.648 7.126 6.68 K2V 896 1
5 HD 197481 BY* 20 45 09.5324974119 -31 20 27.237889841   10.05 8.627 9.078 6.593 M1VeBa1 1153 0
6 HD 209458b Pl 22 03 10.7727465312 +18 53 03.549393384           ~ 1859 1
7 HD 209458 V* 22 03 10.7727465312 +18 53 03.549393384   8.21 7.63     F9V 1115 1

To bookmark this query, right click on this link: simbad:objects in 2016A&A...587A..87C and select 'bookmark this link' or equivalent in the popup menu