SIMBAD references

2016A&A...588A...5T - Astronomy and Astrophysics, volume 588A, 5-5 (2016/4-1)

Long-rising Type II supernovae from Palomar Transient Factory and Caltech Core-Collapse Project.

TADDIA F., SOLLERMAN J., FREMLING C., MIGOTTO K., GAL-YAM A., ARMEN S., DUGGAN G., ERGON M., FILIPPENKO A.V., FRANSSON C., HOSSEINZADEH G., KASLIWAL M.M., LAHER R.R., LELOUDAS G., LEONARD D.C., LUNNAN R., MASCI F.J., MOON D.-S., SILVERMAN J.M. and WOZNIAK P.R.

Abstract (from CDS):

Context. Supernova (SN) 1987A was a peculiar hydrogen-rich event with a long-rising (∼84d) light curve, stemming from the explosion of a compact blue supergiant star. Only a few similar events have been presented in the literature in recent decades.
Aims. We present new data for a sample of six long-rising Type II SNe (SNe II), three of which were discovered and observed by the Palomar Transient Factory (PTF) and three observed by the Caltech Core-Collapse Project (CCCP). Our aim is to enlarge this small family of long-rising SNe II, characterizing their differences in terms of progenitor and explosion parameters. We also study the metallicity of their environments.
Methods. Optical light curves, spectra, and host-galaxy properties of these SNe are presented and analyzed. Detailed comparisons with known SN 1987A-like events in the literature are shown, with particular emphasis on the absolute magnitudes, colors, expansion velocities, and host-galaxy metallicities. Bolometric properties are derived from the multiband light curves. By modeling the early-time emission with scaling relations derived from the SuperNova Explosion Code (SNEC) models of MESA progenitor stars, we estimate the progenitor radii of these transients. The modeling of the bolometric light curves also allows us to estimate other progenitor and explosion parameters, such as the ejected 56Ni mass, the explosion energy, and the ejecta mass.
Results. We present PTF12kso, a long-rising SN II that is estimated to have the largest amount of ejected 56Ni mass measured for this class. PTF09gpn and PTF12kso are found at the lowest host metallicities observed for this SN group. The variety of early light-curve luminosities depends on the wide range of progenitor radii of these SNe, from a few tens of R☉ (SN 2005ci) up to thousands (SN 2004ek) with some intermediate cases between 100R☉ (PTF09gpn) and 300R☉ (SN 2004em).
Conclusions. We confirm that long-rising SNe II with light-curve shapes closely resembling that of SN 1987A generally arise from blue supergiant (BSG) stars. However, some of them, such as SN 2004em, likely have progenitors with larger radii (∼300R☉, typical of yellow supergiants) and can thus be regarded as intermediate cases between normal SNe IIP and SN 1987A-like SNe. Some extended red supergiant (RSG) stars such as the progenitor of SN 2004ek can also produce long-rising SNe II if they synthesized a large amount of 56Ni in the explosion. Low host metallicity is confirmed as a characteristic of the SNe arising from compact BSG stars.

Abstract Copyright: © ESO, 2016

Journal keyword(s): supernovae: general - Galaxy: abundances

Simbad objects: 25

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2016A&A...588A...5T and select 'bookmark this link' or equivalent in the popup menu


2021.12.06-07:07:48

© Université de Strasbourg/CNRS

    • Contact