SIMBAD references

2016AJ....152...54V - Astron. J., 152, 54-54 (2016/September-0)

Compositional homogeneity of CM parent bodies.

VERNAZZA P., MARSSET M., BECK P., BINZEL R.P., BIRLAN M., CLOUTIS E.A., DEMEO F.E., DUMAS C. and HIROI T.

Abstract (from CDS):

CM chondrites are the most common type of hydrated meteorites, making up ∼1.5% of all falls. Whereas most CM chondrites experienced only low-temperature (∼0degC-120degC) aqueous alteration, the existence of a small fraction of CM chondrites that suffered both hydration and heating complicates our understanding of the early thermal evolution of the CM parent body(ies). Here, we provide new constraints on the collisional and thermal history of CM-like bodies from a comparison between newly acquired spectral measurements of main-belt Ch/Cgh-type asteroids (70 objects) and existing laboratory spectral measurements of CM chondrites. It first appears that the spectral variation observed among CM-like bodies is essentially due to variations in the average regolith grain size. Second, the spectral properties of the vast majority (unheated) of CM chondrites resemble both the surfaces and the interiors of CM-like bodies, implying a "low" temperature (<300degC) thermal evolution of the CM parent body(ies). It follows that an impact origin is the likely explanation for the existence of heated CM chondrites. Finally, similarly to S-type asteroids and (2) Pallas, the surfaces of large (D > 100 km)–supposedly primordial–Ch/Cgh-type main-belt asteroids likely expose the interiors of the primordial CM parent bodies, a possible consequence of impacts by small asteroids (D < 10 km) in the early solar system.

Abstract Copyright: © 2016. The American Astronomical Society. All rights reserved.

Journal keyword(s): meteorites, meteors, meteoroids - methods: data analysis - methods: laboratory: solid state - methods: observational - minor planets, asteroids: general - techniques: spectroscopic - techniques: spectroscopic

VizieR on-line data: <Available at CDS (J/AJ/152/54): table1.dat>

Simbad objects: 2

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2016AJ....152...54V and select 'bookmark this link' or equivalent in the popup menu


2019.09.23-05:49:37

© Université de Strasbourg/CNRS

    • Contact