SIMBAD references

2016ApJ...833...23N - Astrophys. J., 833, 23-23 (2016/December-2)

The scaling relations and star formation laws of mini-starburst complexes.

NGUYEN-LU'O'NG Q., NGUYEN H.V.V., MOTTE F., SCHNEIDER N., FUJII M., LOUVET F., HILL T., SANHUEZA P., CHIBUEZE J.O. and DIDELON P.

Abstract (from CDS):

The scaling relations and star formation laws for molecular cloud complexes (MCCs) in the Milky Way are investigated. MCCs are mostly large (R > 50 pc), massive (∼106 \textM) gravitationally unbound cloud structures. We compare their masses Mgas, mass surface densities ΣMgas_, radii R, velocity dispersions σ, star formation rates (SFRs), and SFR densities ΣSFR with those of structures ranging from cores, clumps, and giant molecular clouds, to MCCs, and galaxies, spanning eight orders of magnitudes in size and 13 orders of magnitudes in mass. This results in the following universal relations:σ\simR0.5,Mgas\simR2SFR∼ΣMgas1.5,SFR\simMgas_0.9,∧\SFR∼σ2.7. Variations in the slopes and coefficients of these relations are found at individual scales, signifying different physics acting at different scales. Additionally, there are breaks at the MCC scale in the σ–R relation and between starburst and normal star-forming objects in the SFR–Mgas and ΣSFRMgas_ relations. Therefore, we propose to use the Schmidt-Kennicutt diagram to distinguish starburst from normal star-forming structures by applying a ΣMgas_ threshold of ∼100 \textM pc–2 and a ΣSFR threshold of 1 \textM yr–1 kpc–2. Mini-starburst complexes are gravitationally unbound MCCs that have enhanced ΣSFR (>1 \textM yr–1 kpc–2), probably caused by dynamic events such as radiation pressure, colliding flows, or spiral arm gravitational instability. Because of dynamical evolution, gravitational boundedness does not play a significant role in regulating the star formation activity of MCCs, especially the mini-starburst complexes, which leads to the dynamical formation of massive stars and clusters. We emphasize the importance of understanding mini-starbursts in investigating the physics of starburst galaxies.

Abstract Copyright: © 2016. The American Astronomical Society. All rights reserved.

Journal keyword(s): evolution - Galaxy: evolution - ISM: clouds - ISM: structure - methods: observational - stars: formation - stars: formation

Simbad objects: 28

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2016ApJ...833...23N and select 'bookmark this link' or equivalent in the popup menu


2020.01.25-03:07:48

© Université de Strasbourg/CNRS

    • Contact