SIMBAD references

2016MNRAS.456.4051B - Mon. Not. R. Astron. Soc., 456, 4051-4060 (2016/March-2)

Effects of refraction on transmission spectra of gas giants: decrease of the Rayleigh scattering slope and breaking of retrieval degeneracies.

BETREMIEUX Y.

Abstract (from CDS):

Detection of the signature of Rayleigh scattering in the transmission spectrum of an exoplanet is increasingly becoming the target of observational campaigns because the spectral slope of the Rayleigh continuum enables one to determine the scaleheight of its atmosphere in the absence of hazes. However, this is only true when one ignores the refractive effects of the exoplanet's atmosphere. I illustrate with a suite of simple isothermal clear Jovian H2-He atmosphere models with various abundances of water that refraction can decrease significantly the spectral slope of the Rayleigh continuum and that it becomes flat in the infrared. This mimics a surface, or an optically thick cloud deck, at much smaller pressures than one can probe in the non-refractive case. The relative impact of refraction on an exoplanet's transmission spectrum decreases with atmospheric temperatures and increases with stellar temperature. Refraction is quite important from a retrieval's perspective for Jovian-like planets even at the highest atmospheric temperatures (1200 K) considered in this paper, and for all stellar spectral types. Indeed, refraction breaks in large part the retrieval degeneracy between abundances of chemical species and the planet's radius because the size of spectral features increases significantly with abundances, in stark contrast with the non-refractive case which simply shifts them to a larger or smaller effective radius. Abundances inferred assuming that the atmosphere is cloud-free are lower limits. These results show how important it is to include refraction in retrieval algorithms to interpret transmission spectra of gas giants accurately.

Abstract Copyright: © 2016 The Author Published by Oxford University Press on behalf of the Royal Astronomical Society (2016)

Journal keyword(s): radiative transfer - atmospheric effects - methods: numerical - planets and satellites: atmospheres

Simbad objects: 10

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2016MNRAS.456.4051B and select 'bookmark this link' or equivalent in the popup menu


2021.04.23-09:31:56

© Université de Strasbourg/CNRS

    • Contact