SIMBAD references

2016MNRAS.457.1339P - Mon. Not. R. Astron. Soc., 457, 1339-1351 (2016/April-1)

The dynamical fate of binary star clusters in the Galactic tidal field.

PRIYATIKANTO R., KOUWENHOVEN M.B.N., ARIFYANTO M.I., WULANDARI H.R.T. and SIREGAR S.

Abstract (from CDS):

Fragmentation and fission of giant molecular clouds occasionally results in a pair of gravitationally bound star clusters that orbit their mutual centre of mass for some time, under the influence of internal and external perturbations. We investigate the evolution of binary star clusters with different orbital configurations, with a particular focus on the Galactic tidal field. We carry out N-body simulations of evolving binary star clusters and compare our results with estimates from our semi-analytic model. The latter accounts for mass-loss due to stellar evolution and two-body relaxation, and for evolution due to external tides. Using the semi-analytic model, we predict the long-term evolution for a wide range of initial conditions. It accurately describes the global evolution of such systems, until the moment when a cluster merger is imminent. N-body simulations are used to test our semi-analytic model and also to study additional features of evolving binary clusters, such as the kinematics of stars, global cluster rotation, evaporation rates, and the cluster merger process. We find that the initial orientation of a binary star cluster with respect to the Galactic field, and also the initial orbital phase, is crucial for its fate. Depending on these properties, the binaries may experience orbital reversal, spiral-in, or vertical oscillation about the Galactic plane before they actually merge at t ≃ 100 Myr, and produce rotating star clusters with slightly higher evaporation rates. The merger process of a binary cluster induces an outburst that ejects ∼10 per cent of the stellar members into the Galactic field.

Abstract Copyright: © 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society

Journal keyword(s): methods: numerical - stars: kinematics and dynamics - Galaxy: kinematics and dynamics - open clusters and associations: general

Simbad objects: 17

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2016MNRAS.457.1339P and select 'bookmark this link' or equivalent in the popup menu


2021.04.21-19:54:11

© Université de Strasbourg/CNRS

    • Contact