2016MNRAS.458.3479M


C.D.S. - SIMBAD4 rel 1.7 - 2019.10.20CEST14:51:49

2016MNRAS.458.3479M - Mon. Not. R. Astron. Soc., 458, 3479-3488 (2016/June-1)

An all-sky support vector machine selection of WISE YSO candidates.

MARTON G., TOTH L.V., PALADINI R., KUN M., ZAHORECZ S., McGEHEE P. and KISS C.

Abstract (from CDS):

We explored the AllWISE catalogue of the Wide-field Infrared Survey Explorer (WISE) mission and identified Young Stellar Object (YSO) candidates. Reliable 2MASS and WISE photometric data combined with Planck dust opacity values were used to build our data set and to find the best classification scheme. A sophisticated statistical method, the support vector machine (SVM) is used to analyse the multidimensional data space and to remove source types identified as contaminants (extragalactic sources, main-sequence stars, evolved stars and sources related to the interstellar medium). Objects listed in the SIMBAD data base are used to identify the already known sources and to train our method. A new all-sky selection of 133 980 Class I/II YSO candidates is presented. The estimated contamination was found to be well below 1 per cent based on comparison with our SIMBAD training set. We also compare our results to that of existing methods and catalogues. The SVM selection process successfully identified >90 per cent of the Class I/II YSOs based on comparison with photometric and spectroscopic YSO catalogues. Our conclusion is that by using the SVM, our classification is able to identify more known YSOs of the training sample than other methods based on colour-colour and magnitude-colour selection. The distribution of the YSO candidates well correlates with that of the Planck Galactic Cold Clumps in the Taurus-Auriga-Perseus-California region.

Abstract Copyright: © 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society

Journal keyword(s): methods: data analysis - methods: statistical - stars: pre-main-sequence - stars: protostars - infrared: general - infrared: stars

VizieR on-line data: <Available at CDS (J/MNRAS/458/3479): clasi-ii.dat clasiii.dat>

Simbad objects: 27

goto Full paper

goto View the reference in ADS

Number of rows : 27

N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2019
#notes
1 W 3 MoC 02 27 04.10 +61 52 27.1           ~ 942 3
2 NGC 1333 SFR 03 28 55 +31 22.2   10.9       ~ 1181 1
3 NAME Tau-Aur-Per Region reg 03 33 +31.0           ~ 31 0
4 NAME California Molecular Cloud MoC 04 10.0 +39 00           ~ 85 1
5 NAME Tau-Aur Region SFR 04 30 +25.0           ~ 1180 1
6 NAME Taurus Dark Cloud SFR 04 41.0 +25 52           ~ 3308 0
7 NAME Orion Nebula Cluster OpC 05 35.0 -05 29           ~ 1906 1
8 NAME Ori A MoC 05 38 -07.1           ~ 2610 0
9 LDN 1641 MoC 05 39.0 -07 00           ~ 416 0
10 NAME Ori B MoC 05 41 43.0 -01 54 44           ~ 1127 0
11 NAME LDN 1630N Cl* 05 46 47.0 +00 09 50           ~ 10 1
12 LBN 192.48-00.21 HII 06 11 59 +18 03.3           ~ 83 0
13 NAME S254-258 complex SFR 06 12 48.0 +17 59 00           ~ 21 0
14 SH 2-258 HII 06 13 28 +17 55.5           ~ 65 0
15 NAME Gal Anticenter reg 06 17 +22.5           ~ 689 0
16 NGC 3372 HII 10 44 19.0 -59 53 21           ~ 865 2
17 NAME Lup Cloud SFR 16 03 -38.1           ~ 481 0
18 NAME Ophiuchus Molecular Cloud SFR 16 28 06 -24 32.5           ~ 2929 0
19 NAME Gal Center reg 17 45 40.04 -29 00 28.1           ~ 11004 0
20 NAME Serpens Cloud SFR 18 29 49 +01 14.8           ~ 882 2
21 Ass Vul OB 1 As* 19 44.0 +24 13           ~ 84 0
22 IC 5070 HII 20 51.0 +44 22           ~ 172 1
23 NAME NAN complex HII 20 55 +43.9           ~ 40 0
24 NGC 7000 HII 20 58 47 +44 19.8           ~ 355 1
25 NAME Cep Cloud SFR 22 00.0 +76 30           ~ 96 0
26 NAME III CEP ASSOC As* 23 04.2 +63 24           ~ 288 0
27 NAME Cep Flare MoC 23 34 +72.0           ~ 96 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2016MNRAS.458.3479M and select 'bookmark this link' or equivalent in the popup menu


2019.10.20-14:51:49

© Université de Strasbourg/CNRS

    • Contact