SIMBAD references

2016MNRAS.460...44P - Mon. Not. R. Astron. Soc., 460, 44-66 (2016/July-3)

Radio synchrotron emission from secondary electrons in interaction-powered supernovae.

PETROPOULOU M., KAMBLE A. and SIRONI L.

Abstract (from CDS):

Several supernovae (SNe) with an unusually dense circumstellar medium (CSM) have been recently observed at radio frequencies. Their radio emission is powered by relativistic electrons that can be either accelerated at the SN shock (primaries) or injected as a by-product (secondaries) of inelastic proton-proton collisions. We investigate the radio signatures from secondary electrons, by detailing a semi-analytical model to calculate the temporal evolution of the distributions of protons, primary and secondary electrons. With our formalism, we track the cooling history of all the particles that have been injected into the emission region up to a given time, and calculate the resulting radio spectra and light curves. For an SN shock propagating through the progenitor wind, we find that secondary electrons control the early radio signatures, but their contribution decays faster than that of primary electrons. This results in a flattening of the light curve at a given radio frequency that depends only upon the radial profiles of the CSM density and of the shock velocity, υ_0. The relevant transition time at the peak frequency is ∼ {190}   d   K_ep,-3^{-1} A_w, 16{/β_{0, -1.5}^2}, where A_w is the wind mass-loading parameter, β0=υ0/c and K_ep are the electron-to-proton ratio of accelerated particles. We explicitly show that late peak times at 5 GHz (i.e. t_pk >= 300-1000 d) suggest a shock wave propagating in a dense wind (A_w >= 1016–1017 gr cm^-1), where secondary electrons are likely to power the observed peak emission.

Abstract Copyright: © 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society

Journal keyword(s): astroparticle physics - radiation mechanisms: non-thermal - shock waves - supernovae: general - supernovae: general

Simbad objects: 17

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2016MNRAS.460...44P and select 'bookmark this link' or equivalent in the popup menu


2021.04.11-14:57:02

© Université de Strasbourg/CNRS

    • Contact