SIMBAD references

2016MNRAS.462..876H - Mon. Not. R. Astron. Soc., 462, 876-892 (2016/October-2)

HD 24355 observed by the Kepler K2 mission: a rapidly oscillating Ap star pulsating in a distorted quadrupole mode.

HOLDSWORTH D.L., KURTZ D.W., SMALLEY B., SAIO H., HANDLER G., MURPHY S.J. and LEHMANN H.

Abstract (from CDS):

We present an analysis of the first Kepler K2 mission observations of a rapidly oscillating Ap (roAp) star, HD 24355 (V = 9.65). The star was discovered in SuperWASP broad-band photometry with a frequency of 224.31 d–1 (2596.18 µHz; P = 6.4 min) and an amplitude of 1.51 mmag, with later spectroscopic analysis of low-resolution spectra showing HD 24355 to be an A5 Vp SrEu star. The high-precision K2 data allow us to identify 13 rotationally split sidelobes to the main pulsation frequency of HD 24355. This number of sidelobes combined with an unusual rotational phase variation show this star to be the most distorted quadrupole roAp pulsator yet observed. In modelling this star, we are able to reproduce well the amplitude modulation of the pulsation, and find a close match to the unusual phase variations. We show this star to have a pulsation frequency higher than the critical cut-off frequency. This is currently the only roAp star observed with the Kepler spacecraft in short cadence mode that has a photometric amplitude detectable from the ground, thus allowing comparison between the mmag amplitude ground-based targets and the µmag spaced-based discoveries. No further pulsation modes are identified in the K2 data, showing this star to be a single-mode pulsator.

Abstract Copyright: © 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society

Journal keyword(s): asteroseismology - techniques: photometric - stars: chemically peculiar - stars: individual: HD 24355 - stars: magnetic field - stars: oscillations - stars: oscillations

Simbad objects: 28

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2016MNRAS.462..876H and select 'bookmark this link' or equivalent in the popup menu


2021.03.07-05:10:30

© Université de Strasbourg/CNRS

    • Contact