2017A&A...605A..55A


Query : 2017A&A...605A..55A

2017A&A...605A..55A - Astronomy and Astrophysics, volume 605A, 55-55 (2017/9-1)

Testing baryon-induced core formation in ΛCDM: A comparison of the DC14 and coreNFW dark matter halo models on galaxy rotation curves.

ALLAERT F., GENTILE G. and BAES M.

Abstract (from CDS):

Recent cosmological hydrodynamical simulations suggest that baryonic processes, and in particular supernova feedback following bursts of star formation, can alter the structure of dark matter haloes and transform primordial cusps into shallower cores. To assess whether this mechanism offers a solution to the long-standing cusp-core controversy, simulated haloes must be compared to real dark matter haloes inferred from galaxy rotation curves. For this purpose, two new dark matter density profiles were recently derived from simulations of galaxies in complementary mass ranges: the DC14 halo (1010<Mhalo/M<8x1011) and theCORENFW halo (107<Mhalo/M<109). Both models have individually been found to give good fits to observed rotation curves. For the DC14 model, however, the agreement of the predicted halo properties with cosmological scaling relations was confirmed by one study, but strongly refuted by another. A next important question is whether, despite their different approaches, the two models converge to the same solution in the mass range where both should be appropriate. To investigate this, we tested the DC14 andCORENFW halo models on the rotation curves of a selection of galaxies with halo masses in the range 4x109M-7x1010M and compared their predictions. We further applied the DC14 model to a set of rotation curves at higher halo masses, up to 9x1011M, to verify the agreement with the cosmological scaling relations. Both models are generally able to reproduce the observed rotation curves, in line with earlier results, and the predicted dark matter haloes are consistent with the cosmological c-Mhalo and M*-Mhalo relations. We find that the DC14 andCORENFW models are also in fairly good agreement with each other, even though DC14 tends to predict slightly less extended cores and somewhat more concentrated haloes thanCORENFW. While the quality of the fits is generally similar for both halo models, DC14 does perform significantly better thanCORENFW for three galaxies. In each of these cases, the problem forCORENFW is related to connection of the core size to the stellar half-mass radius, although we argue that it is justifiable to relax this connection for NGC 3741. A larger core radius brings theCORENFW model for this galaxy in good agreement with the data and the DC14 model.

Abstract Copyright: © ESO, 2017

Journal keyword(s): galaxies: kinematics and dynamics - galaxies: halos - galaxies: evolution - dark matter - dark matter

Simbad objects: 28

goto Full paper

goto View the references in ADS

Number of rows : 28
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 NAME Wolf-Lundmark-Melotte G 00 01 57.9 -15 27 50   11.50 11.10 10.93   ~ 691 2
2 M 33 GiG 01 33 50.8965749232 +30 39 36.630403128 6.17 6.27 5.72     ~ 5838 1
3 NGC 925 H2G 02 27 16.913 +33 34 43.97   10.69 10.12 9.55   ~ 783 1
4 NGC 2366 H2G 07 28 52.4529 +69 12 38.859 12.25 11.86 11.39 11.33   ~ 769 0
5 NGC 2403 AGN 07 36 51.3381434280 +65 36 09.650825640 9.31 8.84 8.38 8.19   ~ 1789 1
6 UGC 4426 LSB 08 28 28.560 +41 51 27.13   18       ~ 161 0
7 NGC 2976 GiP 09 47 15.458 +67 54 58.97 11.77 11.03 10.16 9.51   ~ 673 1
8 NGC 3109 AG? 10 03 06.877 -26 09 34.46 11.10 10.42 10.04 9.91   ~ 769 2
9 NGC 3198 EmG 10 19 54.990 +45 32 58.88 10.83 10.87 10.33     ~ 905 1
10 NGC 3223 Sy2 10 21 35.0831008008 -34 16 00.504571368   11.82 10.82 10.35 11.2 ~ 170 0
11 IC 2574 AG? 10 28 23.6148831408 +68 24 43.440012756 11.70 11.07 10.87 10.74   ~ 665 1
12 UGC 5918 GiG 10 49 36.412 +65 32 01.07 15.55 15.27 14.79 14.55   ~ 159 0
13 NGC 3521 G 11 05 48.5680991376 -00 02 09.245076540 10.06 9.83 9.02 10.1 9.6 ~ 817 2
14 NGC 3621 Sy2 11 18 16.300 -32 48 45.36 10.10 9.44 9.56 8.07 10.1 ~ 590 3
15 NGC 3741 AG? 11 36 05.754 +45 17 02.96 15.01 14.55 14.23 14.06   ~ 220 0
16 UGC 7559 GiP 12 27 05.566 +37 08 30.39   14.19   13.55   ~ 205 0
17 NGC 4455 EmG 12 28 44.1242000448 +22 49 13.538159508   15.5       ~ 210 0
18 NAME CVn I dwA GiC 12 38 40.06 +32 46 00.5 16.91 16.66 16.73 16.62   ~ 232 0
19 UGC 8024 GiC 12 54 05.248 +27 08 58.67 14.37 14.23 13.95 13.84   ~ 592 1
20 ACO 1656 ClG 12 59 44.40 +27 54 44.9           ~ 4803 2
21 UGC 8320 AG? 13 14 27.997 +45 55 11.14 13.63 13.26 13.02 12.81   ~ 282 0
22 M 63 LIN 13 15 49.2741893928 +42 01 45.728076108   9.34 8.59 8.35   ~ 1224 2
23 NGC 5204 LSB 13 29 36.508 +58 25 07.43   11.84   11.37   ~ 471 0
24 UGC 8508 AG? 13 30 44.8682655624 +54 54 38.522749824 14.72 14.25 13.90 13.75   ~ 195 0
25 NGC 6822 G 19 44 56.199 -14 47 51.29   18 8.1     ~ 1562 0
26 NAME Aquarius Dwarf G 20 46 51.7 -12 50 54 15.75 15.18 14.83 14.46   ~ 445 1
27 ESO 471-6 G 23 43 45.549 -31 57 24.37 14.55 14.03 13.73 13.63   ~ 147 1
28 NGC 7793 GiG 23 57 49.7540045856 -32 35 27.701550744 10.26 9.74 9.28 9.06 9.7 ~ 1107 2

To bookmark this query, right click on this link: simbad:objects in 2017A&A...605A..55A and select 'bookmark this link' or equivalent in the popup menu