SIMBAD references

2017A&A...607A..90E - Astronomy and Astrophysics, volume 607A, 90-90 (2017/11-1)

The HIP 79977 debris disk in polarized light.

ENGLER N., SCHMID H.M., THALMANN C., BOCCALETTI A., BAZZON A., BARUFFOLO A., BEUZIT J.L., CLAUDI R., COSTILLE A., DESIDERA S., DOHLEN K., DOMINIK C., FELDT M., FUSCO T., GINSKI C., GISLER D., GIRARD J.H., GRATTON R., HENNING T., HUBIN N., JANSON M., KASPER M., KRAL Q., LANGLOIS M., LAGADEC E., MENARD F., MEYER M.R., MILLI J., MOUILLET D., OLOFSSON J., PAVLOV A., PRAGT J., PUGET P., QUANZ S.P., ROELFSEMA R., SALASNICH B., SIEBENMORGEN R., SISSA E., SUAREZ M., SZULAGYI J., TURATTO M., UDRY S. and WILDI F.

Abstract (from CDS):

Context. Debris disks are observed around 10 to 20% of FGK main-sequence stars as infrared excess emission. They are important signposts for the presence of colliding planetesimals and therefore provide important information about the evolution of planetary systems. Direct imaging of such disks reveals their geometric structure and constrains their dust-particle properties.
Aims. We present observations of the known edge-on debris disk around HIP 79977 (HD 146897) taken with the ZIMPOL differential polarimeter of the SPHERE instrument. We measure the observed polarization signal and investigate the diagnostic potential of such data with model simulations.
Methods. SPHERE-ZIMPOL polarimetric data of the 15Myr-old F star HIP 79977 (Upper Sco, 123 pc) were taken in the Very Broad Band (VBB) filter (λc=735nm, Δλ=290nm) with a spatial resolution of about 25 mas. Imaging polarimetry efficiently suppresses the residual speckle noise from the AO system and provides a differential signal with relatively small systematic measuring uncertainties. We measure the polarization flux along and perpendicular to the disk spine of the highly inclined disk for projected separations between 0.2'' (25AU) and 1.6'' (200AU). We perform model calculations for the polarized flux of an optically thin debris disk which are used to determine or constrain the disk parameters of HIP 79977.
Results. We measure a polarized flux contrast ratio for the disk of (Fpol)disk/F*=(5.5±0.9)x10–4 in the VBB filter. The surface brightness of the polarized flux reaches a maximum of SBmax=16.2mag/arcsec2 at a separation of 0.2''-0.5'' along the disk spine with a maximum surface brightness contrast of 7.64mag/arcsec2. The polarized flux has a minimum near the star <0.2'' because no or only little polarization is produced by forward or backward scattering in the disk section lying in front of or behind the star. The width of the disk perpendicular to the spine shows a systematic increase in FWHM from 0.1'' (12AU) to 0.3''-0.5'', when going from a separation of 0.2'' to >1''. This can be explained by a radial blow-out of small grains. The data are modelled as a circular dust belt with a well defined disk inclination i=85(±1.5)° and a radius between r0=60 and 90AU. The radial density dependence is described by (r/r0)α with a steep (positive) power law index α=5 inside r0 and a more shallow (negative) index α=-2.5 outside r0. The scattering asymmetry factor lies between g=0.2 and 0.6 (forward scattering) adopting a scattering-angle dependence for the fractional polarization such as that for Rayleigh scattering.
Conclusions. Polarimetric imaging with SPHERE-ZIMPOL of the edge-on debris disk around HIP 79977 provides accurate profiles for the polarized flux. Our data are qualitatively very similar to the case of AU Mic and they confirm that edge-on debris disks have a polarization minimum at a position near the star and a maximum near the projected separation of the main debris belt. The comparison of the polarized flux contrast ratio (Fpol)disk/F* with the fractional infrared excess provides strong constraints on the scattering albedo of the dust.

Abstract Copyright: © ESO, 2017

Journal keyword(s): planetary systems - stars: individual: HIP 79977 (HD 146897) - instrumentation: high angular resolution - scattering - techniques: polarimetric - techniques: polarimetric

Simbad objects: 8

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2017A&A...607A..90E and select 'bookmark this link' or equivalent in the popup menu


2019.09.23-18:16:49

© Université de Strasbourg/CNRS

    • Contact