SIMBAD references

2017ApJ...837...53Z - Astrophys. J., 837, 53-53 (2017/March-1)

Angular momentum in disk wind revealed in the young star MWC 349A.


Abstract (from CDS):

Disk winds are thought to play a critical role in star birth. As winds extract excess angular momentum from accretion disks, matter in the disk can be transported inward to the star to fuel mass growth. However, observational evidence of wind carrying angular momentum has been very limited. We present Submillimeter Array (SMA) observations of the young star MWC 349A in the H26α and H30α recombination lines. The high signal-to-noise ratios made possible by the maser emission process allow us to constrain the relative astrometry of the maser spots to milli-arcsecond precision. Previous observations of the H30α line with the SMA and the Plateau de Bure interferometer (PdBI) showed that masers are distributed in the disk and wind. Our new high-resolution observations of the H26α line reveal differences in spatial distribution from that of the H30α line. H26α line masers in the disk are excited in a thin annulus with a radius of about 25 au, while the H30α line masers are formed in a slightly larger annulus with a radius of 30 au. This is consistent with expectations for maser excitation in the presence of an electron density variation of approximately R–4. In addition, the H30α and H26α line masers arise from different parts in the wind. This difference is also expected from maser theory. The wind component of both masers exhibits line-of-sight velocities that closely follow a Keplerian law. This result provides strong evidence that the disk wind extracts significant angular momentum, thereby facilitating mass accretion in the young star.

Abstract Copyright: © 2017. The American Astronomical Society. All rights reserved.

Journal keyword(s): circumstellar matter - masers - stars: individual: MWC 349A - stars: winds, outflows - radio lines: stars - radio lines: stars

Simbad objects: 8

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2017ApJ...837...53Z and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact