SIMBAD references

2017ApJ...839...33S - Astrophys. J., 839, 33-33 (2017/April-2)

Synchrotron emission from dark matter annihilation: predictions for constraints from non-detections of galaxy clusters with new radio surveys.

STORM E., JELTEMA T.E., SPLETTSTOESSER M. and PROFUMO S.

Abstract (from CDS):

The annihilation of dark matter particles is expected to yield a broad radiation spectrum via the production of Standard Model particles in astrophysical environments. In particular, electrons and positrons from dark matter annihilation produce synchrotron radiation in the presence of magnetic fields. Galaxy clusters are the most massive collapsed structures in the universe, and are known to host ∼µG-scale magnetic fields. They are therefore ideal targets to search for, or to constrain the synchrotron signal from dark matter annihilation. In this work, we use the expected sensitivities of several planned surveys from the next generation of radio telescopes to predict the constraints on dark matter annihilation models which will be achieved in the case of non-detections of diffuse radio emission from galaxy clusters. Specifically, we consider the Tier 1 survey planned for the Low Frequency Array (LOFAR) at 120 MHz, the Evolutionary Map of the Universe (EMU) survey planned for the Australian Square Kilometre Array Pathfinder (ASKAP) at 1.4 GHz, and planned surveys for Aperture Tile in Focus (APERTIF) at 1.4 GHz. We find that, for massive clusters and dark matter masses 100 GeV, the predicted limits on the annihilation cross section would rule out vanilla thermal relic models for even the shallow LOFAR Tier 1, ASKAP, and APERTIF surveys.

Abstract Copyright: © 2017. The American Astronomical Society. All rights reserved.

Journal keyword(s): dark matter - galaxies: clusters: intracluster medium - radiation mechanisms: non-thermal - radio continuum: general - radio continuum: general

Simbad objects: 3

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2017ApJ...839...33S and select 'bookmark this link' or equivalent in the popup menu


2019.12.10-15:02:48

© Université de Strasbourg/CNRS

    • Contact