SIMBAD references

2017ApJ...840...22L - Astrophys. J., 840, 22-22 (2017/May-1)

Cloud structure of three galactic infrared dark star-forming regions from combining ground- and space-based bolometric observations.

LIN Y., LIU H.B., DALE J.E., LI D., BUSQUET G., ZHANG Z.-Y., GINSBURG A., GALVAN-MADRID R., KOVACS A., KOCH E., QIAN L., WANG K., LONGMORE S., CHEN H.-R. and WALKER D.

Abstract (from CDS):

We have modified the iterative procedure introduced by Lin et al., to systematically combine the submillimeter images taken from ground-based (e.g., CSO, JCMT, APEX) and space (e.g., Herschel, Planck) telescopes. We applied the updated procedure to observations of three well-studied Infrared Dark Clouds (IRDCs): G11.11-0.12, G14.225-0.506, and G28.34+0.06, and then performed single-component, modified blackbody fits to each pixel to derive ∼10'' resolution dust temperature and column density maps. The derived column density maps show that these three IRDCs exhibit complex filamentary structures embedded with rich clumps/cores. We compared the column density probability distribution functions (N-PDFs) and two-point correlation (2PT) functions of the column density field between these IRDCs with several OB-cluster-forming regions. Based on the observed correlation between the luminosity-to-mass ratio and the power-law index of the N-PDF, and complementary hydrodynamical simulations for a 104 M molecular cloud, we hypothesize that cloud evolution can be better characterized by the evolution of the (column) density distribution function and the relative power of dense structures as a function of spatial scales, rather than merely based on the presence of star-forming activity. An important component of our approach is to provide a model-independent quantification of cloud evolution. Based on the small analyzed sample, we propose four evolutionary stages, namely, cloud integration, stellar assembly, cloud pre-dispersal, and dispersed cloud. The initial cloud integration stage and the final dispersed cloud stage may be distinguished from the two intermediate stages by a steeper than -4 power-law index of the N-PDF. The cloud integration stage and the subsequent stellar assembly stage are further distinguished from each other by the larger luminosity-to-mass ratio (>40 L/M) of the latter. A future large survey of molecular clouds with high angular resolution may establish more precise evolutionary tracks in the parameter space of N-PDF, 2PT function, and luminosity-to-mass ratio.

Abstract Copyright: © 2017. The American Astronomical Society. All rights reserved.

Journal keyword(s): ISM: structure - stars: formation - submillimeter: ISM - submillimeter: ISM

Errata: erratum vol. 843, art. 153 (2017)

Simbad objects: 9

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2017ApJ...840...22L and select 'bookmark this link' or equivalent in the popup menu


2020.01.18-13:29:44

© Université de Strasbourg/CNRS

    • Contact