SIMBAD references

2017ApJ...846..166L - Astrophys. J., 846, 166-166 (2017/September-2)

Evidence of a bottom-heavy initial mass function in massive early-type galaxies from near-infrared metal lines.


Abstract (from CDS):

We present new evidence for a variable stellar initial mass function (IMF) in massive early-type galaxies, using high-resolution, near-infrared spectroscopy from the Folded-port InfraRed Echellette spectrograph (FIRE) on the Magellan Baade Telescope at Las Campanas Observatory. In this pilot study, we observe several gravity-sensitive metal lines between 1.1 and 1.3 µm in eight highly luminous (L∼10L*) nearby galaxies. Thanks to the broad wavelength coverage of FIRE, we are also able to observe the Ca II triplet feature, which helps with our analysis. After measuring the equivalent widths (EWs) of these lines, we notice mild to moderate trends between EW and central velocity dispersion (σ), with some species (K I, Na I, Mn I) showing a positive EW-σ correlation and others (Mg I, Ca II, Fe I) a negative one. To minimize the effects of metallicity, we measure the ratio R = [EW(K I)/EW(Mg I)], finding a significant systematic increase in this ratio with respect to σ. We then probe for variations in the IMF by comparing the measured line ratios to the values expected in several IMF models. Overall, we find that low-mass galaxies (σ ∼100 km s–1) favor a Chabrier IMF, while high-mass galaxies (σ ∼350 km s–1) are better described with a steeper (dwarf-rich) IMF slope. While we note that our galaxy sample is small and may suffer from selection effects, these initial results are still promising. A larger sample of galaxies will therefore provide an even clearer picture of IMF trends in this regime.

Abstract Copyright: © 2017. The American Astronomical Society. All rights reserved.

Journal keyword(s): galaxies: elliptical and lenticular, cD - galaxies: evolution - galaxies: formation - galaxies: stellar content - stars: luminosity function, mass function - stars: luminosity function, mass function

Simbad objects: 9

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2017ApJ...846..166L and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact