SIMBAD references

2017MNRAS.465..111K - Mon. Not. R. Astron. Soc., 465, 111-122 (2017/February-2)

The spatial distribution of neutral hydrogen as traced by low H I mass galaxies.


Abstract (from CDS):

The formation and evolution of galaxies with low neutral atomic hydrogen (H I) masses, M_ H  I_ < 108 h–2 M, are affected by host dark matter halo mass and photoionization feedback from the UV background after the end of reionization. We study how the physical processes governing the formation of galaxies with low H I mass are imprinted on the distribution of neutral hydrogen in the Universe using the hierarchical galaxy formation model, GALFORM. We calculate the effect on the correlation function of changing the H I mass detection threshold at redshifts 0 <= z <= 0.5. We parametrize the clustering as ξ(r) = (r/r0)–γ and we find that including galaxies with M_ H  I_ < 108 h–2 M increases the clustering amplitude r0 and slope γ compared to samples of higher H I masses. This is due to these galaxies with low H I masses typically being hosted by haloes with masses greater than 1012 h–1 M, and is in contrast to optically selected surveys for which the inclusion of faint, blue galaxies lowers the clustering amplitude. We show the H I mass function for different host dark matter halo masses and galaxy types (central or satellite) to interpret the values of r0 and γ of the clustering of H I-selected galaxies. We also predict the contribution of low H I mass galaxies to the 21 cm intensity mapping signal. We calculate that a dark matter halo mass resolution better than ∼1010 h–1 M at redshifts higher than 0.5 is required in order to predict converged 21 cm brightness temperature fluctuations.

Abstract Copyright: © 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society

Journal keyword(s): galaxies: abundances - galaxies: formation - large-scale structure of Universe - radio lines: galaxies - radio lines: galaxies

Simbad objects: 1

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2017MNRAS.465..111K and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact