2018A&A...614A..51V


Query : 2018A&A...614A..51V

2018A&A...614A..51V - Astronomy and Astrophysics, volume 614A, 51-51 (2018/6-1)

Radiatively driven relativistic jets in Schwarzschild space-time.

VYAS M.K. and CHATTOPADHYAY I.

Abstract (from CDS):


Context.
Aims. We carry out a general relativistic study of radiatively driven conical fluid jets around non-rotating black holes and investigate the effects and significance of radiative acceleration, as well as radiation drag.
Methods. We apply relativistic equations of motion in curved space-time around a Schwarzschild black hole for axis-symmetric one-dimensional jet in steady state, plying through the radiation field of the accretion disc. Radiative moments are computed using information of curved space-time. Slopes of physical variables at the sonic points are found using L'Hopital's rule and employing Runge-Kutta's fourth order method to solve equations of motion. The analysis is carried out using the relativistic equation of state of the jet fluid.
Results. The terminal speed of the jet depends on how much thermal energy is converted into jet momentum and how much radiation momentum is deposited onto the jet. Many classes of jet solutions with single sonic points, multiple sonic points, as well as those having radiation driven internal shocks are obtained. Variation of all flow variables along the jet-axis has been studied. Highly energetic electron-proton jets can be accelerated by intense radiation to terminal Lorentz factors γT ∼ 3. Moderate terminal speed vT ∼ 0.5 is obtained for moderately luminous discs. Lepton dominated jets may achieve γT ∼ 10.
Conclusions. Thermal driving of the jet itself and radiation driving by accretion disc photons produce a wide-ranging jet solutions starting from moderately strong jets to the relativistic ones. Interplay of intensity, the nature of the radiation field, and the energetics of the jet result in a variety of jet solutions. We show that radiation field is able to induce steady shocks in jets, one of the criteria to explain high-energy power-law emission observed in spectra of some of the astrophysical objects.

Abstract Copyright: © ESO 2018

Journal keyword(s): hydrodynamics - ISM: jets and outflows - shock waves - black hole physics - radiation mechanisms: general - relativistic processes

Simbad objects: 8

goto Full paper

goto View the references in ADS

Number of rows : 8
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2021
#notes
1 V* V1213 Tau Or* 04 31 37.47192 +18 12 24.4800           K7 533 0
2 HH 34 HH 05 35 31.30 -06 28 43.0     16     ~ 474 2
3 M 87 BiC 12 30 49.42338230 +12 23 28.0438581 10.16 9.59 8.63   7.49 ~ 6496 3
4 V* V1033 Sco HXB 16 54 00.137 -39 50 44.90   15.20 14.2 16.14   F5IV 1762 1
5 SS 433 HXB 19 11 49.5645897700 +04 58 57.824087535   16.3 13.0     A7Ib: 1989 4
6 Granat 1915+105 HXB 19 15 11.55576 +10 56 44.9052           ~ 2401 0
7 V* V1521 Cyg HXB 20 32 25.78 +40 57 27.9           WN4/5-6/7 1827 2
8 GRB 980519 gB 23 22 21.5 +77 15 43           ~ 196 0

To bookmark this query, right click on this link: simbad:objects in 2018A&A...614A..51V and select 'bookmark this link' or equivalent in the popup menu


2021.10.16-17:41:27

© Université de Strasbourg/CNRS

    • Contact